Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4755 results about "Sol-gel" patented technology

In materials science, the sol–gel process is a method for producing solid materials from small molecules. The method is used for the fabrication of metal oxides, especially the oxides of silicon (Si) and titanium (Ti). The process involves conversion of monomers into a colloidal solution (sol) that acts as the precursor for an integrated network (or gel) of either discrete particles or network polymers. Typical precursors are metal alkoxides.

Process for preparing titanium dioxide nano-belts

The invention provides a method for preparing a titanium dioxide nano belt, belonging to the nano material technical field. The prior methods for preparing the titanium dioxide nano belt comprise the hydro-thermal method and the combination method of the sol-gel method and the hydro-thermal method. The prior electrostatic spinning method is applied to the preparation of nano fibers. The invention comprises three steps that: 1. a spinning solution is prepared; the mixture of polymethylmethacrylate and vinylpyrrolidone is used as a macromolecule template, and the mixture of chloroform and N,N-dimethylformamide is used as a solvent; 2. a titanium alkoxide/ macromolecule template compound nano belt is prepared; the electrostatic spinning method is used, and the technical parameters are as follows: the voltage is between 15 and 25kV and the curing distance is between 15 and 30cm; 3. a TiO2 nano belt is prepared; the heat treatment method is used, and the technical parameters are as follows: the rate of temperature rise is between 0.5 and 2 DEG C/min and the heat preservation time at the temperature of between 500 and 900 DEG C is between 10 and 15h; for the TiO2 nano belt prepared, the width is between 5 and 15mu m, the thickness is between 30 and 60nm and the length is more than 200mu m; the TiO2 nano belt comprises a pure phase anatase type TiO2 nano belt and a pure phase rutile type TiO2 nano belt.

Super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane, and preparation method and application thereof

The invention discloses a super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane, and a preparation method and an application thereof. According to the method, fabric mesh with a specification of 100-300 meshes is subjected to ultrasonic cleaning, and is air-dried under normal temperature; a hydrophilic polymer water-sensitive agent and a cross-linking agent are dissolved in water according to a ratio of 1:9-9:1; the mixture is well mixed by magnetic stirring, such that a solution with a concentration of 1-99% is prepared; nano-sol is prepared with a sol-gel method; the solution and the nano-sol are prepared into a mixed solution with a concentration of 1-99%, and the solution is well dispersed through ultrasonic dispersion; the mesh is soaked in the mixed solution and is vertically lifted, or the mesh is directly sprayed by using a high-pressure spraying gun; and the mesh is bake-dried, such that the super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane is obtained. Contact angles of the super-hydrophilic and underwater-super-oleophobic oil-water separation mesh membrane with water and oil in air are both 0 DEG, and the membrane is super-hydrophilic. Under water, the contact angle of the membrane with oil drops is larger than 150 DEG, and the membrane has an oil drop low adhesion characteristic. The mesh membrane provided by the invention can be used in oil-water mixture separation and oil-containing sewage processing.

Oxidation barrier coatings for silicon based ceramics

A protective barrier coating system including a diffusion barrier coating and an oxidation barrier coating and method for use in protecting silicon-based ceramic turbine engine components. A complete barrier coating system includes a thermal barrier coating of stabilized zirconia and an environmental barrier coating of an alloyed tantalum oxide. The oxidation barrier coating includes a layer of metallic silicates formed on a substrate of silicon nitride or silicon carbide to be protected. The oxidation barrier coating can include silicates of scandium, ytterbia or yttrium. The oxidation barrier coating may also include an inner layer of Si2ON2 between the diffusion barrier and the metallic silicate layer. The oxidation barrier coating can be applied to the substrate by spraying, slurry dipping and sintering, by a sol-gel process followed by sintering, by plasma spray, or by electron beam-physical vapor deposition. The diffusion layer of essentially pure Si3N4 can be applied to the substrate to prevent the migration of damaging cations from the protective layers to the substrate and is preferably formed by chemical vapor deposition. A method for protecting silicon based substrates can comprise a step of forming an oxidation barrier coating on a substrate, where a step of forming the oxidation barrier includes a step of sintering the oxidation barrier and substrate in a wet gas containing hydrogen.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products