Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1190 results about "Water of crystallization" patented technology

In chemistry, water of crystallization or water of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

Method for production of phosphoric acid and combined production of a-hemihydrate gypsum through dehydrate-hemihydrate wet phosphoric acid technology

The invention discloses a method for the production of phosphoric acid and the combined production of a-hemihydrate gypsum through a dehydrate-hemihydrate wet phosphoric acid technology. A dehydrate part production technology is characterized in that the reaction tank temperature is 70-80DEG C, the retention time is 1.5-3h, the free sulfate radical concentration is 1-2%, and the produced wet phosphoric acid concentration omega(P2O5) is 35-39%. A hemihydrate part production technology is characterized in that the reaction tank temperature is 86-94DEG C, the retention time is 1-2h, and the mass concentration of free sulfate radicals is 6-8%. Phosphoric acid produced through the hemihydrate technology has a concentration omega(P2O5) of 10-15% and is used as a recycle acid of the dehydrate part, the crystal water content of the combined-production hemihydrate gypsum is 5-7%, the mass percentage of free P2O5 in gypsum is less than 0.4%, and the crystal form of the produced hemihydrate gypsum is a-hemihydrate gypsum. Compared with the dehydrate technology, the method disclosed in the invention improves the phosphoric acid concentration and improves the phosphorus recovery rate to above 98%, and the combined-production a-hemihydrate gypsum can be directly used as a building gypsum product, so energy consumption saving is realized.
Owner:WENGFU (GRP) CO LTD

Industrial waste salt slag innocent treatment method

ActiveCN104344407AAlleviate the pressure of solid waste managementPromote sustainable developmentIncinerator apparatusSlagPetrochemical
The invention discloses an industrial waste salt slag innocent treatment method. The industrial waste salt slag innocent treatment method mainly comprises the following steps: a) burdening materials according to types of the industrial waste salt slag, and uniformly mixing the materials; 2) drying the mixture, wherein the drying process at least comprises initial drying and medium microwave drying, the initial drying process can remove the most part of free water, the medium microwave drying can remove the crystal water and gasify a part of organic matters, and the drying temperature is a continuously adjustable stable temperature gradient; c) anaerobic microwave pyrolysis: pyrolyzing the dried mixture at the temperature of 450-500 DEG C and under a nitrogen charged environment for more than 100 minutes, so as to pyrolyze the organic matters to form micromolecules to be gasified, organic salt to be split and gasified and the contained ammonium salt to be decomposed; 3) conducting air cooling to the pyrolyzed waste salt to be put in storage, and then conducting complete innocent treatment to the pyrolyzed waste salt, detecting and then selling the qualified product or reusing the treated waste salt. The industrial waste salt slag innocent treatment method has the characteristics of safety, efficiency, energy conservation and the like, has the obvious advantage in the resource recycling aspect, can greatly slow down the solid waste management stress in the industrial developed area, in particular the chemical engineering petrochemical industry park, is favorable to promote the related sustained development of the park.
Owner:ZHEJIANG DONGTIANHONG ENVIRONMENTAL PROTECTION ENG CO LTD

High-heat-conductivity inorganic phase-change energy storage material

The invention relates to the technical field of energy storage materials, particularly a high-heat-conductivity inorganic phase-change energy storage material. The high-heat-conductivity inorganic phase-change energy storage material is composed of the following components in percentage by mass: 80-99.4% of energy storage material, 0.25-10% of nucleating agent, 0.1-15% of modifier, 0.1-15% of water and 0.15-19% of heat-conducting reinforcing material. The energy storage material is crystalline hydrated salt, the nucleating agent is carbonate or borate, the modifier is a polyacrylic acid emulsion or thickening powder, and the heat-conducting reinforcing material is one or mixture of more of graphite, carbon powder, copper powder, carbon fiber and silicon carbide powder. Compared with the prior art, the energy storage material has the advantages of high stability, low tendency to supercooling, high latent heat energy, high heat conductivity and the like. By selecting the proper modifier and proportion thereof, the heat-conducting reinforcing material and nucleating agent material can be successfully dispersed uniformly in the system, thereby solving the problem of the phenomenon of phase separation of the material due to long-term cycle, further enhancing the heat-conducting property of the material and being worthy of popularization and application.
Owner:PIONEER ENERGY JIANGSU

Method for preparing magnesium metal and by-product by vacuum carbothermic reduction with serpentine minerals

InactiveCN101560603AHigh in magnesiumNo need for calcination to remove carbonProcess efficiency improvementMagnetic separationSlagMassicot
The invention discloses a method for preparing a magnesium metal and a by-product by vacuum carbothermic reduction with serpentine minerals. The method comprises the following steps: using serpentine mineral powder as a raw material; adding a carbonaceous reducing agent which is 1 to 2 times of the theoretical quantity of carbon required for completely reducing magnesium silicate in the serpentine; adding a catalyst, and mixing the materials evenly to obtain a mixed raw material; pressing the mixed raw material into spherical or blocky ball agglomerations and drying the ball agglomerations; putting the dried ball agglomerations into a vacuum furnace, controlling the vacuum degree in the furnace to between 10 and 500 Pa, raising the temperature to between 500 and 700 DEG C, and keeping the temperature for 20 to 60 minutes to remove crystal water and clinker the materials; keeping the vacuum degree in the furnace, raising the temperature to between 1,200 and 1,500 DEG C, and reducing the magnesium silicate and oxides of metallic iron and nickel at a constant temperature for 30 to 60 minutes; and condensing magnesium vapor obtained from the reduction on a magnesium condenser into crystallized magnesium, recycling the metallic iron and the metallic nickel in the slag through magnetic separation, and preparing the slag after the magnetic separation into industrial silicon carbide through decarburization and purification.
Owner:北京华夏建龙矿业科技有限公司

Battery grade iron and manganese phosphate and preparation method thereof

The invention relates to battery grade iron and manganese phosphate and a preparation method thereof. The chemical composition of the battery grade iron and manganese phosphate is MnxFe(1-x)PO4, wherein x is greater than or equal to 0.1 and smaller than or equal to 0.9; the preparation method comprises the steps of adopting a hydrothermal oxidation-coprecipitation technology, putting a soluble phosphorus source, iron source and manganese source solution into a reaction kettle according to the chemical composition MnxFe(1-x)PO4 of the iron and manganese phosphate, adding a surfactant and nitric acid, controlling the system pH value to be within 1 to 4, stirring for 2 to 48 h at 100 to 250 DEG C, so as to perform hydrothermal reaction, obtaining turbid liquid containing MnxFe(1-x)PO4.yH2O precipitate, naturally cooling the turbid liquid to room temperature, filtering, washing and drying, obtaining MnxFe(1-x)PO4.yH2O, performing high-temperature roasting at 250 to 700 DEG C, and then obtaining the battery grade iron and manganese phosphate not containing crystal water. The method is simple and practicable, and is easy to realize scale production, the prepared iron and manganese phosphate has the advantages that size distribution is uniform, the purity is high, and iron and manganese elements realize atomic-scale uniform distribution, and the battery grade iron and manganese phosphate a belongs to the optimal precursor for preparing lithium ferric manganese phosphate battery materials.
Owner:杨志宽

Method for concentrating waste sulfuric acid by utilizing waste heat of titanium dioxide calcinator

The invention discloses a method for concentrating waste sulfuric acid by utilizing waste heat of a titanium dioxide calcinator, comprising the following steps: at normal temperature and pressure, proper amount of water absorbent is added to titanium dioxide waste acid, liquid water is dissolved out in the form of solid crystal water through the water absorbent, filtrate after solid-liquid separation is cooled, iron vitriol in the solution is crystallized and dissolved out, and the acid liquid is further concentrated; the two steps are repeatedly carried out until the concentration of sulfuric acid in the final filtrate reaches more than 60%, and then the final filtrate is utilized in the acid hydrolysis procedure; and the water absorbent is dehydrated and dried to be regenerated by taking dustproof tail gas of the calcinator, and the steam generated in the drying and regeneration is cooled and flows back to technological process as washing water in titanic acid rinsing or is drained. The method provided by the invention solves the problems of more equipment, long flow and easy blockage in the existing technology, and the equipment investment and operating cost are reduced; and the water absorbent is recycled after being regenerated, so that the energy is saved, the consumption is reduced, and the efficiency is obvious; no wastewater, waste gases and residues are generated in the whole technology, the operability is strong, the productivity of equipment is high, the flow is simple, the investment is less, the cost is low, energy is saved, emission is reduced, and the benefit is obvious.
Owner:黄正源

Preparation method of zirconium-based microporous coordination polymer

The invention provides a preparation method of a zirconium-based microporous coordination polymer. The preparation method includes: utilizing organic monocarboxylic acid which is simple as a regulator. The organic monocarboxylic acid can promote forming of a Zr6O4(OH)4(CO2)12 cluster, so that influence of water contained on Zr6O4(OH)4 is avoided, forming of Zr-MOF is facilitated, and quality of Zr-MOF is guaranteed. ZrO2+salt containing crystal water, such as ZrOCl2.8H2O is selected as zirconium salt, so that cost can be lowered, water in a trace amount can be guided in to promote generation of the Zr6O4(OH)4(CO2)12 cluster. A periodic adding mode is adopted, so that generation of a reactant can be accelerated, technical process can be shortened effectively, solvent utilization rate is increased, and reaction efficiency is improved finally; more importantly, product quality is guaranteed. The zirconium-based microporous coordination polymer is uniform in grain size, high in crystallinity, complete in shape and suitable for gas storage and separation and serving as a carrier. By using the method, quality such as crystallinity, specific surface area and grain size uniformity of Zr-MOF can be guaranteed, and the zirconium-based microporous coordination polymer is suitable for large-scale production.
Owner:李亚丰

Foam metal composite phase-change material and preparation method thereof

The invention relates to a foam metal composite phase-change material and a preparation method thereof, and belongs to the technical field of phase-change energy storage materials. A crystallized hydrated salt-foam metal composite phase-change energy storage material is prepared by adopting the adsorption characteristic of a porous foam metal skeleton structure, and a vacuum argon filling state is kept in a preparation process, so that impurities are prevented from entering, and the quality of a product is ensured. The phase-change material is relatively uniformly and sufficiently distributed in a substrate of the foam metal skeleton material, and the shaping characteristic of the composite material is maintained under the combined action of a capillary force and surface tension of foam metal, so that the phase-change material does not leak easily in a phase-change process, and the preparation method of the phase-change material is simple and convenient, high in recombination rate and good in operability. The composite phase-change material has the advantages of high phase-change latent heat in unit volume, high heat storage and release rates, good heat-conducting property, lower supercooling degree, and the like; and the lower heat conductivity and supercooling problems existing after the crystallized hydrated salt phase-change material is applied for a long time are solved effectively.
Owner:BEIHANG UNIV

P-Ca-V composite phosphating solution on magnesium alloy surface and chemical conversion processing method

The invention relates to a composite phosphating solution of P-Ca-V on the surface of a magnesium alloy and a method for chemical conversion treatment. The solution is characterized in that each liter of the composite phosphating solution comprises the following compositions: 4 to 20 milliliters of 85 percent phosphoric acid of, 5 to 30 grams of sodium dihydrogen phosphate, 10 to 40 grams of calcium nitrate, 0.5 to 10 grams of benzene sulfonic acid sodium salt, 0.5 to 5 grams of ammonium metavanadate, and the balance being water. The method comprises the following steps: pre-degreasing, degreasing, secondary water washing, acid washing, secondary water washing, alkaline etching, secondary water washing, chemical transformation, secondary water washing, pure water washing, and drying. Taking an AZ91D magnesium alloy as an example, 48 hours after a corrosion resistance salt spray test after the treatment by the method of the invention, the corrosion area of the AZ91D magnesium alloy is less than 1 percent; the paint film adhesive force is at 0 level by a grid method and is obviously superior to the performance of a chromate conversion coating; and the formed chemical conversion coating does not contain crystal water. The composite phosphating solution has the synergistic reaction of Ca and V, as well as the functions of a corrosion inhibitor and a wetting agent of the benzene sulfonic acid sodium salt.
Owner:嘉兴中科亚美合金技术有限责任公司

Test method of sulphate content of desulfurization gypsum

The invention provides a test method of the sulphate content of desulfurization gypsum, comprising the following steps: 3-5 grams of gypsum samples are taken to be heated and dried for 30-60 minutes in a baking oven with the temperature of 42-48 DEG C and then placed into a drier to be cooled to room temperature and weighed by a 1/10000 level balance, the gypsum samples are repeatedly heated and weighed till the gypsum samples have constant weight, and the weight W (g) of the gypsum samples is recorded; the gypsum samples are placed back to the baking oven to be heated and dried for 30-60 minutes under the temperature of 350-370 DEG C and then placed into the drier to be cooled to the room temperature and weighed by the 1/10000 level balance, the gypsum samples are repeatedly heated and weighed till the gypsum samples have constant weight, and the weight W1 (g) of the gypsum samples is recorded; the computation of the crystallization water content of the gypsum samples is as follows: the crystallization water content X(%)=(W-W1)*100/W, and the computation of the sulphate content of the gypsum samples is as follows: the sulphate content is indicated by calcium sulphate dehydrate content, CaSO4.2H2O(%)=X*100/20.9275. The method is simple, convenient and fast; and in addition, compared with the prior art, the invention greatly enhances the analysis speed, simplifies the analysis steps and decreases the experimental apparatus.
Owner:HEBEI ELECTRIC POWER RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products