Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

124 results about "Recombination rate" patented technology

The recombination rate is the rate at which the association between the two loci is changed. Let , be the probability that there are crossovers betwee our two loci. The recombination rate is therefore . To make a long story short, the recombination rate is the rate at which the number of crossovers is odd.

Bismuth ferrite nano fiber material and preparation method thereof

The invention discloses bismuth ferrite nano fiber and a preparation method thereof. The preparation method of the bismuth ferrite nano fiber comprises the following steps: 1) using bismuth nitrate or a hydrate thereof and iron nitrate or a hydrate thereof as raw materials, dissolving the two raw materials in a solvent, adding a complexing agent, stirring to obtain bismuth ferrite sol, then adding a polymer as a spinning aid in the bismuth ferrite sol, and stirring evenly to obtain a precursor solution; 2) performing electrostatic spinning of the precursor solution to obtain bismuth ferrite precursor fiber; and 3) performing heat treatment of the bismuth ferrite precursor fiber to remove the polymer to obtain the bismuth ferrite nano fiber. In the BiFeO3 (bismuth ferrite) nano fiber prepared by the preparation method, crystal grains of the fiber are arranged along the axial direction to form a bamboo-joint-like structure. The bismuth ferrite nano fiber has a narrow forbidden bandwidth (2.1-2.3 eV), a high utilization rate of visible light, a large specific surface area and few crystal boundaries and crystal faces, can effectively improve the separation of photogenerated carriers and reduce the recombination rate of photogenerated electrons and holes, has a high quantum efficiency, and shows more excellent photocatalytic properties than nanoparticles.
Owner:TSINGHUA UNIV

Site-directed modification method for DNA viral genome

The invention provides a site-directed modification method for DNA viral genome, and the problems in the prior art are solved that induction of site-directed mutagenesis of DNA viral genome is difficult, the operation of inserting an exogenous fragment is complex, and recombination rate is lower. The site-directed modification method comprises: transfecting cells by a plasmid carrying a nuclease system, infecting by a virus, after the cells show pathological changes, collecting the cells with pathological changes, performing freeze-thaw or ultrasonic processing, and centrifuging, separating the liquid supernatant to obtain a progeny virus. The site-directed modification method is capable of realizing applications to screening of virus attenuated vaccine strains, construction of viral genetic carriers and an oncolytic virus, research on virus function sequences, and the like; during modification of the viral genome, the method helps to improve mutagenesis efficiency, accurately control DNA virus for genome site-directed mutagenesis and specific gene knockout, simplify operation steps of inserting the DNA virus carrier by an exogenous gene, and improve efficiency that the exogenous gene is integrated to the viral genome, so that the work of screening high-flux recombination viruses is convenient to conduct.
Owner:INST OF MEDICAL BIOLOGY CHINESE ACAD OF MEDICAL SCI

Quantum dot light-emitting diode and preparation method thereof, and display panel

The invention provides a method of preparing a quantum dot light-emitting diode. The method comprises steps of forming a cathode, forming an electron transport layer, forming a light emitting layer, forming a hole transport layer, and forming an anode. The step of forming a light emitting layer is implemented as follows: forming a coating including an electron barrier compound next to the electrontransport layer; forming a coating containing a quantum dot material on the surface of the coating containing the electron barrier compound; and/or forming a coating containing a hole transport compound on the surface of the coating containing the quantum dot material. The electron barrier compound and the hole transport compound make ligand exchange with the surface ligand of the quantum dot material. In addition, the invention also provides a quantum dot light-emitting diode. According to the quantum dot light-emitting diode provided by the invention, the electron transport rate is reducedand/or the hole transport rate is increased to regulate the injection balance of electrons and holes and improve the carrier recombination rate of the QLED device; and thus the luminous efficiency ofthe QLED device is improved.
Owner:BOE TECH GRP CO LTD +1

Epitaxial structure of a light emitting diode and its manufacturing method

The invention discloses an epitaxial structure of a light-emitting diode and a manufacturing method thereof. On a GaAs substrate layer, there are a Bragg reflection layer, a first-type confinement layer, an active layer, a second-type confinement layer, and a current spreading layer in sequence from bottom to top. , the active layer is composed of n sets of quantum wells and quantum barriers alternately, where 100≥n≥2, and the barrier height in the same quantum barrier is a gradual distribution or the barrier height between different quantum barriers It is a gradual distribution; its manufacturing method includes the following steps: select GaAs as the substrate layer, and grow a Bragg reflection layer, a first-type confinement layer, an active layer, a second-type confinement layer, and a current spreading layer sequentially on the GaAs substrate layer, wherein The active layer is formed by alternately growing n groups of quantum wells and quantum barriers, and the quantum barriers are made of (AlxGa1-x)yIn1-yP group III and V compounds, where 1≥x≥0.5, and the invention enhances the quantum barrier’s effect on electrons The confinement effect increases the recombination rate of electrons and holes in the quantum well, thereby increasing the brightness of the light-emitting diode.
Owner:XIAMEN CHANGELIGHT CO LTD

Nanometer titania photocatalyst for degrading VOC and preparation method of nanometer titania photocatalyst for degrading VOC

The invention discloses a preparation method of a nanometer titania photocatalyst for degrading VOC. The method comprises the following steps: S1, putting nanometer titania powder into a tube furnace, and then introducing ammonia gas of which the purity is not lower than 99.9%; S2, heating up the furnace body to 550-750 DEG C at the heating rate of 4 DEG C/min to 10 DEG C/min, and carrying out heat preservation, wherein the ammonia gas is lastingly introduced in the process S2; S3, carrying out vacuum calcination under the condition that the air pressure is lower than the barometric pressure in the tube furnace, wherein the heat preservation temperature in the S3 is the same as that in the S2; and S4, cooling and taking out a sample. The nanometer titania photocatalyst prepared by adopting the method disclosed by the invention has the relatively strong visible light absorption ability and relatively low electron-cavity recombination rate, high-concentration benzene pollutants can be quickly and completely degraded, and 5.256*10<-3>mg of benzene contained in a space of 0.002m<3> can be completely degraded only by consuming 0.1g of mass energy within four hours under visible light irradiation.
Owner:HUAZHONG UNIV OF SCI & TECH

Method for preparing CdS quantum dot/Bi2MoO6/graphene composite photocatalyst

The invention discloses a method for preparing a CdS quantum dot/Bi2MoO6/graphene composite photocatalyst and belongs to the technical field of synthesis of inorganic environmental-friendly photocatalytic materials. According to key points of the technical scheme of the present invention, the method for preparing the CdS quantum dot/Bi2MoO6/graphene composite photocatalyst disclosed by the invention comprises the following step: compounding CdS quantum dots, Bi2MoO6 and graphene, to obtain the CdS quantum dot/Bi2MoO6/graphene composite photocatalyst, wherein a molar ratio of the CdS quantum dot to Bi2MoO6 is 1:(0.1-0.5); and the mass ratio of the graphene to Bi2MoO6 is (0.03-0.15):1. According to the CdS quantum dot/Bi2MoO6/graphene composite photocatalyst prepared by the method disclosed by the invention, the recombination rate of photo-induced electrons and holes is effectively reduced, photocatalytic water splitting hydrogen production catalytic activity of the CdS quantum dots is improved, and a light etching phenomenon of the CdS quantum dots in the photocatalytic water splitting process is retarded. Moreover, the method has the advantages of mild operating conditions, low agglomeration degree of the prepared product and high photocatalytic activity.
Owner:HENAN NORMAL UNIV

Boron diffusion method of N type silicon chip, crystalline silicon solar cell and manufacturing method of crystalline silicon solar cell

The invention discloses a boron diffusion method of an N type silicon chip, a crystalline silicon solar cell and a manufacturing method of the crystalline silicon solar cell. The boron diffusion method comprises the following steps of a deposition stage: placing the silicon chip subjected to wet etching into a diffusion furnace, and then introducing nitrogen, oxygen and a boron source for depositing the surface of the silicon chip; a diffusion stage: raising the temperature of the silicon chip with the surface being deposited to a preset temperature for promoting the diffusion of boron; a temperature dropping stage: dropping the temperature of the silicon chip with the boron being diffused, and introducing nitrogen in the temperature dropping process to obtain the silicon chip with the boron being diffused. After the deposition diffusion process disclosed by the invention is adopted, the concentration of boron atoms on the surface of the silicon chip is reduced, the recombination rate and the lattice damage of the surface are reduced, the STDEV (standard deviation) is controlled to be about 2.0, the sheet resistance uniformity of boron diffusion is improved, the battery conversion efficiency is improved, the consumption of boron sources is also reduced, BGS (borosilicate glass) is prevented from being excessively generated, and the cost is reduced.
Owner:一道新能源科技(衢州)有限公司

Big thickness BFe30-1-1/35CrMo explosive welding high intensity high corrosion resistance composite board

The invention provides a heavy section BFe30-1-1/35CrMo explosion welding high-strength high-anticorrosion composite plate. Firstly, the explosion speed of dynamite is controlled within about 800-1000m/s by the optimal design of dynamite formula. Secondly, by a principle of selecting the lower limit of the charging main parameter, the charging auxiliary parameters such as clearance and charging size of basic composite plate are reasonably designed, sand soil foundation added by water is selected and configured and the water content and density thereof are controlled, thus ensuring the once recombination rate of the heavy section BFe30-1-1/35CrMo explosion welding high-strength high-anticorrosion composite plate to achieve 100 percent and the adhesion strength thereof to achieve or even exceed the national standard, and avoiding the crack generation of the heavy section composite plate and high-strength basic plate during the explosion welding process. Finally, the subsequent crack of the composite pate is ensured not to be generated in the subsequent processing by the formulation of heat disposal parameters. The composite plate has ultra-high anticorrosion performance and extremely high high-temperature strength and anti-impact toughness.
Owner:JIANGSU RUNBANG NEW MATERIAL GRP CO LTD

Technology for improving conversion efficiency of solar photovoltaic battery

The invention belongs to the technical field of semiconductor solar photovoltaic batteries and in particular relates to a technology for improving the conversion efficiency of a solar photovoltaic battery. An additional layer comprising a transparent conductive film layer is additionally arranged on an insulation medium mask layer on the front surface of the solar photovoltaic battery, a voltage is applied to the transparent conductive film, and ions are injected to a transparent negative charge capturing layer and captured by the transparent negative charge capturing layer to achieve the purposes of changing the surface potential, the surface space charge region and the surface energy band of a semiconductor material under the insulation medium mask layer on the front surface of the solar photovoltaic battery. An exhaust (or reverse type) state of the surface space charge region of the semiconductor is changed into a stacked state, and a conduction band in the surface energy band is moved to an interface defect energy level near a position far away from the center of a forbidden band, both of which are beneficial to reducing the effective surface recombination rate of a photon-generated carrier and collecting photon-generated minority carriers as much as possible, increasing photocurrent output of the solar voltaic battery and improving the conversion efficiency of the solar voltaic battery.
Owner:石郧熙

Preparation method for stannous methyl amino iodide-titanium dioxide visible light catalytic material

The invention discloses a preparation method for a stannous methyl amino iodide-titanium dioxide visible light catalytic material. The preparation method comprises the following steps: 1) preparing ammonium methyl iodide; 2) preparing stannous iodide; 3) preparing stannous methyl amino iodide; 4) preparing the stannous methyl amino iodide-titanium dioxide visible light catalytic material: adding stannous methyl amino iodide and tetrabutyl titanate into normal hexane, mixing, heating and stirring at 70 DEG C for reaction under reflux, centrifugally separating turbid liquid by using a high speed centrifuge, adding into deionized water after centrifugal separation, magnetically stirring, filtering, washing and drying to obtain dry solid powder, and putting into a muffle furnace for roasting, thereby acquiring the methyl amino stannous iodide-titanium dioxide visible light catalytic material. The preparation method is simple and convenient in operation and low in cost; the photoproduction electron generated by the visible light catalytic material can quickly transfer to a TiO2 guide tape; the recombination rate of photoproduction electron and hole can be reduced; the separation of the photoproduction electron-hole on the material interface can be promoted; the visible light catalytic activity of the material is promoted.
Owner:SHANGHAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products