Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5366 results about "Genotype" patented technology

The genotype is the part of the genetic makeup of a cell, and therefore of any individual, which determines one of its characteristics (phenotype). The term was coined by the Danish botanist, plant physiologist and geneticist Wilhelm Johannsen in 1903.

Cry1F and Cry1AC transgenic cotton lines and event-specific identification thereof

This invention relates to plant breeding and the protection of plants from insects. More specifically, this invention includes novel transformation events of cotton plants comprising one or more polynucleotide sequences, as described herein, inserted into specific site(s) within the genome of a cotton cell. In highly preferred embodiments, said polynucleotide sequences encode “stacked” Cry1F and Cry1Ac lepidopteran insect inhibitory proteins. However, the subject invention includes plants having single cry1F or cry1Ac events, as described herein. Additionally, the invention is related to cotton plants derived from that transformation event and to assays for detecting the presence of the event in a sample. More specifically, the present invention provides DNA and related assays for detecting the presence of certain insect-resistance events in cotton. The assays are based on the DNA sequences of recombinant constructs inserted into the cotton genome and of the genomic sequences flanking the insertion sites. These sequences are unique. Based on these insert and border sequences, event-specific primers were generated. PCR analysis demonstrated that these cotton lines can be identified in different cotton genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify these cotton lines. Kits and conditions useful in conducting the assays are also provided. These materials and methods can also be used to assist breeding programs to further develop traits in cotton.
Owner:CORTEVA AGRISCIENCE LLC

Optimization and Individualization of Medication Selection and Dosing

The invention provides population models, methods, and algorithms for targeting a dosing regimen or compound selection to an individual patient. The methods and algorithms of the invention utilize population models that incorporate genotype information for genes encoding drug metabolizing enzymes for one or more compounds of interest. The methods allow integration of genotype information for one or more genes encoding a drug metabolizing enzyme, particularly a cytochrome P450 gene with patient data. The methods allow integration of genotype information and the effect of one or more compounds on one or more drug metabolizing enzymes. The methods allow iterative feedback of drug metabolizing data obtained from a patient into the process of generating a dosage regimen recommendation for a compound of interest for an individual patient.
Owner:CHILDRENS HOSPITAL MEDICAL CENT CINCINNATI

Cry1F and Cry1Ac transgenic cotton lines and event-specific identification thereof

This invention relates to plant breeding and the protection of plants from insects. More specifically, this invention includes novel transformation events of cotton plants comprising one or more polynucleotide sequences, as described herein, inserted into specific site(s) within the genome of a cotton cell. In highly preferred embodiments, said polynucleotide sequences encode “stacked” Cry1F and Cry1Ac lepidopteran insect inhibitory proteins. However, the subject invention includes plants having single cry1F or cry1Ac events, as described herein. Additionally, the invention is related to cotton plants derived from that transformation event and to assays for detecting the presence of the event in a sample. More specifically, the present invention provides DNA and related assays for detecting the presence of certain insect-resistance events in cotton. The assays are based on the DNA sequences of recombinant constructs inserted into the cotton genome and of the genomic sequences flanking the insertion sites. These sequences are unique. Based on these insert and border sequences, event-specific primers were generated. PCR analysis demonstrated that these cotton lines can be identified in different cotton genotypes by analysis of the PCR amplicons generated with these event-specific primer sets. Thus, these and other related procedures can be used to uniquely identify these cotton lines. Kits and conditions useful in conducting the assays are also provided. These materials and methods can also be used to assist breeding programs to further develop traits in cotton.
Owner:CORTEVA AGRISCIENCE LLC

Method and System for Discovering Ancestors using Genomic and Genealogic Data

InactiveUS20170213127A1Reduced travel tendencyReduce in quantityData visualisationBiostatisticsCommon ancestryGenotype
Described invention and its embodiments, in part, facilitate discovery of ‘Most Recent Common Ancestors’ in the family trees between a massive plurality of individuals who have been predicted to be related according to amount of deoxyribonucleic acids (DNA) shared as determined from a plurality of 3rd party genome sequencing and matching systems. This facilitation is enabled through a holistic set of distributed software Agents running, in part, a plurality of cooperating Machine Learning systems, such as smart evolutionary algorithms, custom classification algorithms, cluster analysis and geo-temporal proximity analysis, which in part, enable and rely on a system of Knowledge Management applied to manually input and data-mined evidences and hierarchical clusters, quality metrics, fuzzy logic constraints and Bayesian network inspired inference sharing spanning across and between all data available on personal family trees or system created virtual trees, and employing all available data regarding the genome-matching results of Users associated to those trees, and all available historical data influencing the subjects in the trees, which are represented in a form of Competitive Learning network. Derivative results of this system include, in part, automated clustering and association of phenotypes to genotypes, automated recreation of ancestor partial genomes from accumulated DNA from triangulations and the traits correlated to that DNA, and a system of cognitive computing based on distributed neural networks with mobile Agents mediating activation according to connection weights.
Owner:DUNCAN MATTHEW CHARLES

Methods for detection of nucleic acid polymorphisms using peptide-labeled oligonucleotides and antibody arrays

The present invention is directed to methods and compositions for use in screening nucleic acid populations for nucleic acid polymorphisms. The methods, referred to generally as ValiGeneSM Mutation Screening, Peptide-Linked (VGMS-PL) methods, are specifically designed for high-throughput genotype mapping and gene expression analysis of animal and plant nucleic acids without requiring a PCR amplification step. In particular, the methods of the invention utilize oligonucleotide probes labeled with distinguishable and identifiable peptide tags, that are captured on addressable antibody arrays.
Owner:VALIGEN US

Method for identifying polymorphic markers in a population

A method is provided for the identification of polymorphic markers in a population. The method includes genotypically characterizing a first sample of a population, selecting one or more individuals of the first sample based upon the genotypic characterization, fabricating a microarray with genomic DNA from each individual selected, and genotyping a second sample of the population using each fabricated microarray as a reference, thereby identifying the polymorphic markers in the population. Also provided is a method for the identification of polymorphic markers in a bacterial population. The method includes phenotypically characterizing a first sample of a population, selecting one or more individuals of the first sample based upon the phenotypic characterization, fabricating a microarray with genomic DNA from each individual selected, and genotyping a second sample of the population using each fabricated microarray as a reference, thereby identifying the polymorphic markers in the population. Also provided is a method for identifying unique bits among a plurality of bit strings including providing a plurality of bit strings, wherein each string has the same number and position of bits, and each bit has a value of 0 or 1, generating a graphical representation-including selectable elements-representing the relatedness of the bit strings, making a selection of a first selectable element, making a selection of a second selectable element, and identifying bits that are present in each bit string represented by the first selectable element and absent in each bit string represented by the second selectable element, or vice-versa.
Owner:BEACON VENTURE MANAGEMENT +1

Method for specifically knocking out hepatitis B virus by CRISPR/Cas9 and gRNA applied to specific targeting HBV DNA

ActiveCN104498493AEfficient removalReduce escape from treatmentGenetic material ingredientsAntiviralsDrugRNA
The invention relates to the technical field of molecular biology and biological medicines, and particularly relates to application of gRNA sequences and combination thereof based on a CRISPR system in treatment on hepatitis B virus. According to the method disclosed by the invention, eight types of guidance RNAs (gRNA) are designed according to design rules of CRISPR gRNA and a conservative region of different genotypes of HBV sequences, and the eight types of guidance RNAs are structured on a PX330 expression vector. By utilizing the eight gRNAs in a cell model, a mouse model and a CRISPR / Cas9 system guided by combination of the cell model and the mouse model, the expression and replication of the hepatitis B virus can be effectively inhibited. By united application of a plurality of gRNAs, a better effect can be achieved, and different genotypes of HBV replication can be better inhibited. The system has the characteristics of being easy to operate, high in inhibition efficiency on HBV replication and applicable to various genotypes. Therefore, the gRNA and the combination thereof related to the invention are expected to be applied in preparation of a novel drug for treating the hepatitis B virus.
Owner:浙江安维珞诊断技术有限公司

Methods and systems for designing animal food compositions

A method for preparing a food composition for animals comprising (a) accessing at least one database that comprises a first data set relating functional genomic profile of a biofluid or tissue sample from an animal to physiological condition and optionally genotype of the animal; (b) accessing at least one database that comprises a second data set relating to effects of bioactive dietary components on functional genomic profile; (c) by use of an algorithm drawing on these data sets, processing input data defining physiological condition and optionally genotype of a subpopulation of animals to derive a nutritional formula promoting wellness of one or more animals of the subpopulation; and (d) preparing a food composition based on the nutritional formula.
Owner:HILLS PET NUTRITION INC

System and Methods for Pharmacogenomic Classification

InactiveUS20140222349A1Good statistical effectDataset can also become very largeBiostatisticsProteomicsGenomicsLearning machine
The invention provides a system and methods for the determination of the pharmacogenomic phenotype of any individual or group of individuals, ideally classified to a discrete, specific and defined pharmacogenomic population(s) using machine learning and population structure. Specifically, the invention provides a system that integrates several subsystems, including (1) a system to classify an individual as to pharmacogenomic cohort status using properties of underlying structural elements of the human population based on differences in the variations of specific genes that encode proteins and enzymes involved in the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics, (2) the use of a pre-trained learning machine for classification of a set of electronic health records (EHRs) as to pharmacogenomic phenotype in lieu of genotype data contained in the set of EHRs, (3) a system for prediction of pharmacological risk within an inpatient setting using the system of the invention, (4) a method of drug discovery and development using pattern-matching of previous drugs based on pharmacogenomic phenotype population clusters, and (5) a method to build an optimal pharmacogenomics knowledge base through derivatives of private databases contained in pharmaceutical companies, biotechnology companies and academic research centers without the risk of exposing raw data contained in such databases. Embodiments include pharmacogenomic decision support for an individual patient in an inpatient setting, and optimization of clinical cohorts based on pharmacogenomic phenotype for clinical trials in drug development.
Owner:ASSUREX HEALTH INC

Method for utilizing a generic algorithm to provide constraint-based routing of packets in a communication network

A Path Generator connects to a communication network and uses genetic algorithms to assign flows to paths. Genotypes encode flow to path assignments for working and protection paths. Genotype fitness functions are computed as a weighted sum of constraint fitness functions. Each constraint fitness function evaluates the degrees to which the genotype is a satisfactory solution. The system can be used for network modeling. It can also receive requests for on-demand assignment of flows and on-demand rerouting of flows.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO

Method for improved plant breeding

InactiveUS20110167721A1Quick analysisAvoid prolonged exposureGrain huskingGrain polishingGenotypeBreeding program
The invention relates generally to an improved plant breeding system. More particularly, this invention relates to a method for automated, high throughput analysis of plant phenotype and plant genotype in a breeding program.
Owner:BASF PLANT SCI

Method for genotype determination

The present invention is directed to a new method for genotype determination at a specific gene locus of an individual or a fetus comprising (i) amplifying a first sequence of said gene locus and a second sequence of a second reference gene locus from DNA originating from a sample containing biological material of said individual or fetus (ii) Monitoring both amplifications preferably in real time and determining the amount of amplification products after each cycle, and (iii) Calculating the ratio between the amount of DNA from the first gene locus and the amount of DNA from the second gene locus. The new method is useful for a variety of applications, especially for detection of chromosomal abnormalities in fetal cells.
Owner:COSTA JEAN MARC

Method of treating interferon non-responders using HCV protease inhibitor

A method of treating, preventing or ameliorating one or more symptoms associated with hepatitis C virus (HCV) in a patient in whom either the HCV is of Genotype 1 and / or the patient was previously treated with interferon and the previous interferon therapy was ineffective to treat the one or more symptoms associated with HCV, comprising administering to such a patient an effective amount of at least one compound of formulae I-XXVI of which the following structural formula is exemplary or a pharmaceutically acceptable salt, solvate or ester thereof. Optional combined administration of said at least one compound with an interferon or pegylated interferon and / or ribaviron is also contemplated.
Owner:SCHERING CORP

Method for nondestructively measuring main fatty acid content of peanut seeds

The invention discloses a method for nondestructively measuring main fatty acid content of peanut seeds. The method comprises the following steps of: based on the Fourier transform near-infrared diffuse reflection spectrum technology, scanning spectrums by adopting a best integrating sphere diffuse reflection mode for eliminating solid granule non-uniformity, establishing a multiple regression mathematical model by using full peanut seeds of multiple genotypes as standard sample sets, and predicting the main fatty acid content of an unknown sample through the model. The method is nondestructive, does not need to treat the sample, and does not harm the vitality and tissue structure of the seeds. The method has the advantages of simple operation, high sensitivity, high scanning speed, good signal-to-noise ratio and high measurement speed, and is suitable for high oleic acid quality breeding, germ plasm resource identification and inheritance rule research of peanuts.
Owner:SHANDONG PEANUT RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products