Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6013 results about "Smelting process" patented technology

The process of smelting uses both heat and a chemical reduction agent. This process changes the oxidation state of the ore. One of the forms of extracting metals is smelting. The purpose of the smelting process is to produce a metal from its original ore.

Soot treatment process in copper smelting process

The invention provides a soot treatment process in a copper smelting process. The soot treatment process comprises the following steps: firstly carrying out water leaching on copper smelting soot to obtain a water leaching fluid and water leaching residues; then, carrying out acid leaching on one part of the water leaching residues obtained in the last step to obtain an acid leaching fluid, and carrying out alkali leaching on the other part of the water leaching residues to obtain an alkali leaching fluid; carrying out metal replacement on the acid leaching fluid obtained in the last step to precipitate copper to obtain copper-precipitated filtrate; and finally, neutralizing and oxidizing the copper-precipitated filtrate obtained in the last step and the alkali leaching fluid obtained in the last step to obtain ferric arsenate precipitates and arsenic-precipitated filtrate. The soot treatment process provided by the invention, especially the treatment process for high-arsenic high-copper soot realizes the hazard-free treatment effect of arsenic in the high-arsenic high-copper soot, and comprehensively recycles valuable metal copper, zinc and the like in the high-arsenic high-copper soot, so that gradient recycling and comprehensive utilization of soot impurities are realized.
Owner:YANGGU XIANGGUANG COPPER

Method for harmless disposal and recycling of aluminum ash

ActiveCN105271327ATo achieve the purpose of comprehensive recycling of resourcesGreat social valueAmmonia preparation/separationAluminium oxides/hydroxidesMetallic aluminumSodium aluminate
The invention discloses a method for harmless disposal and recycling of aluminum ash. The method comprises steps of raw material water immersion nitrogen and chlorine removal, calcination fluorine removal, alkali fusion sintering, sintering material dissolving-out and purifying impurity removal. Aluminum ash generated in metal aluminum smelting process is employed as a raw material, after metal aluminum is recycled through secondary processing, nitrides are removed through water immersion, fluorides are removed through calcinations, alkali fusion sintering is carried out, the sintering materials are dissolved out, impurities are removed through a sodium aluminate solution, the processed aluminum ash is employed as a raw material for producing sand-shaped aluminum oxide. Ammonia gas generated in the aluminum ash harmless disposal process can be employed as an ammonium production raw material, a chlorination liquid generated can be employed as a chlorate production raw material, and silicon fluoride gas generated in the calcination process is absorbed by an aqueous solution. The method is simple and practical, environmental protection benefits are high, the production efficiency is high, the device investment is low, and energy consumption is low. Harmless and recycling disposal of hazardous wastes can be achieved. The obtained product can be applied in practical production.
Owner:YUNNAN WENSHAN ALUMINUM

Method for melting nickel-base high temperature alloy with electro-slag furnace

The invention relates to a method for melting a nickel-base high temperature alloy with an electro-slag furnace. The method includes the following methods: loading materials, welding a high temperature alloy electrode and a false electrode to be smelted together, and placing slag materials at the bottom of a crystallizer; blowing the welded electrodes with inert gases, and closing a protection cover; protecting a smelting closing smoke exhaust valve, and feeding an Ar gas into the crystallizer and the protection cover; striking an arc and melting slag; cleaning smelting slag materials, starting a smelting period, and swinging a slag resistor for less than 0.5 m omega during the smelting process; adding oxidizing agents, and adding metal aluminum powder continuously or at intervals to serve as deoxidizing agents during an electro-slag re-melting process; adopting feeding thorough three stages, power feeding is decreased rapidly, power feeding is decreased slowly, and finally heat is preserved at constant power; and casting a die, cooling and demolding the die. According to the method for melting the nickel-base high temperature alloy with the electro-slag furnace, the surface of a nickel-base high temperature steel ingot has no slag groove defect, and the burning losses of Al and Ti are less than or equal to 5%.
Owner:SHANXI TAIGANG STAINLESS STEEL CO LTD

High-cleanliness pipeline steel smelting process

ActiveCN104630418ASolve the difficulty of cleanliness controlQuality improvementManufacturing convertersSulfurNon-metallic inclusions
The invention discloses a high-cleanliness pipeline steel smelting process. The process route comprises molten iron pouring, molten iron pretreatment, converter smelting, tapping, deoxidizing, alloying, LF refining furnace, treating with calcium, RH vacuum furnace and continuous casting and is characterized by comprising the following specific steps: firstly, converter smelting process; secondly, refining furnace smelting process; and thirdly, continuous casting process. The invention belongs to a steel-making process in the field of metallurgy and relates to a method for smelting and controlling a high-cleanliness pipeline steel. By molten iron desulphurization pretreatment, optimizing a converter tapping and deoxidizing system and a slagging system, LF refining furnace deep deoxygenation and reducing slag manufacturing processes, RH high-vacuum-degree degassing and inclusion removal process, the pouring is protected by the continuous casting in the whole process so that the composition of a casting billet is uniform, the contents of harmful elements such as S, P, O, N and H are low, the non-metallic inclusions are effectively controlled, the casting billet is good in internal quality and the production of high value-added ultra-low sulfur steel is ensured.
Owner:NANJING IRON & STEEL CO LTD

Method for separating vanadium-titanium magnetite to extract iron, vanadium and titanium

The invention discloses a method for separating vanadium-titanium magnetite to extract iron, vanadium and titanium, comprising the following steps of: magnetically selecting raw magnetite, that is, acquiring iron-vanadium concentrate and tail magnetite after performing magnetic selection on the vanadium-titanium magnetite; sorting titanium concentrate from the tail magnetite, that is, acquiring the titanium concentrate after performing floating selection on the obtained tail magnetite; roasting and magnetically selecting the titanium concentrate, that is, performing enriched-titanium impurity-removing magnetic selection after roasting the titanium concentrate; finely selecting the iron-vanadium concentrate, that is, performing the magnetic selection and fine section again on the iron-vanadium concentrate obtained from magnetic selection; reducing and smelting, that is, mixing the titanium concentrate obtained from the impurity-removing process with the iron concentrate according to the beneficiation yield, adding in a reducer and soda ash to perform reduced iron and vanadium smelting process; purifying vanadium slag, that is, removing the impurity of the vanadium slag obtained by reducing and smelting by using the acidic dipping to obtain the high-quality titanium slag product with the content of TiO2 larger than 92%; and extracting vanadium from pig iron, that is, performing vanadium extraction by converter blowing on the vanadium-containing pig iron obtained by reducing and smelting to obtain the semi-steel and vanadium slag. The method not only improves the utilization ratio of titanium, iron and vanadium but also obtains the high-titanium slag product with the content of TiO2 larger than 92% so as to widen the application field of titanium.
Owner:INST OF MULTIPURPOSE UTILIZATION OF MINERAL RESOURCES CHINESE ACAD OF GEOLOGICAL SCI

Method for adding rare earth metal into steel to improve performance

The invention relates to the field of manufacturing of high-quality metal materials, in particular to a method for adding rare earth metal into steel to improve the performance. In the smelting process of molten steel, the degree of purity of the molten steel and the degree of purity of the high-purity rare earth metal are strictly controlled; the high-purity rare earth metal is added into a steel ladle; the content of sulfur in the molten steel is below 200 ppm and the total oxygen content is below 40 ppm before the high-purity rare earth metal is added; and the total oxygen content of the added high-purity rare earth metal is below 200 ppm. The method is applicable to the processes such as a converter BOF-ladle refining LF-vacuum degassing RH or VD-continuous casting CC / mold casting MC flow, an electric arc furnace EAF-ladle refining LF-vacuum degassing RH or VD-continuous casting CC / mold casting MC flow and a converter BOF / intermediate frequency furnace GOR / AOD(-ladle refining LF)-continuous casting CC / mold casting MC flow, prepares high-quality carbon structural steel, low alloy steel, medium-high alloy steel, tool and mould steel, bearing steel, spring steel, stainless steel and electrical steel, and solves the bottleneck problems that due to a conventional rare earth adding process, the performance of rolled steel is not stable and a water gap is blocked in the production process.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Dephosphorization method of semi-steel

The invention provides a dephosphorization method of semi-steel. The method comprises the following steps: adopting a six-hole oxygen gun to perform sectional smelting through a way of adjusting the oxygen supply strength of the oxygen gun, namely first dephosphorization smelting, adding a first batch of slag-making materials, controlling the oxygen supply strength of a top-blowing oxygen gun at 2.83-3.21Nm3/(t steel. min), simultaneously bottom-blowing nitrogen, smelting and deslagging; performing second dephosphorization smelting, adding a second batch of the slag-making materials, controlling the oxygen supply strength of the top-blowing oxygen gun at 3.58-4.07Nm3/(t steel. min), bottom-blowing the nitrogen during the time period from the beginning of the second dephosphorization smelting to carbon catching, bottom-blowing argon during the time period from the carbon catching to the terminal point of converting, smelting, stopping slag, tapping for getting molten steel with the content of a phosphorus element, which is not more than 0.008% by weight percentage, and performing the operation of remaining the slag after the tapping. By adopting the method, the dephosphorization effect is good, the dephosphorization efficiency is high, the smooth operation of the smelting process of a converter can be ensured, the steel-making production cost can be reduced and the semi-steel can be adopted for producing low-phosphorus steel with high grade and high added value.
Owner:PANZHIHUA IRON AND STEEL +2

Method for extracting high arsenic complicated golden ore concentrate multielement

The invention discloses a method for extracting high arsenic complicated golden ore concentrate multielement. The method comprises the following steps that: the multielement complicated golden ore concentrate with extra-high arsenic is subjected to the roast dearsenification technique treatment, part of sulfur in the multielement high arsenic golden ore concentrate converted into sulfur dioxide and the arsenic converted into arsenic trioxide enter flue gas which is subjected to dust and arsenic collection, and then enter an acid making system to produce sulphuric acid; the multielement smelting slag and multielement low arsenic golden ore concentrate obtained by roast dearsenification, return products and flux are mixed to obtain copper matte regulus, and the like by adopting oxygen enrichment bottom blowing matte smelting gold collecting process to carry out the smelting process; the copper matte regulus is subjected to converting and refining to cast an anode plate which is sent to an electrolysis system to obtain an electrolytic copper product by refining; anode mud generated through electrolysis is sent to a noble metal refine system to produce gold and sliver, and the like; smelting slag and converting slag are subjected to floatation treatment to obtain copper and iron ore concentrate; and the generated gangue belongs to harmless slag and can be used. The method has the characteristics of wide range of the raw material application, high synthesized recovery efficiency of valuable element, and obvious economic and environment benefits.
Owner:SHANDONG HUMON SMELTING

Smelting method for improving phosphorus removal rate of converter

ActiveCN103060508ALower oxygen pressureFoamy splash preventionManufacturing convertersSmelting processOxygen pressure
The invention discloses a smelting method for improving the phosphorus removal rate of a converter. The method comprises the following steps of: at the later stage when steel splashing slag is emptied in the converter, adding 500 to 800 kilograms of lime, slightly stirring, pre-heating, adding waste steel, and blending molten iron; adding a bath of slag forming material such as lime, lightly burnt magnesium blocks, ores and the like when blowing to 45 to 60 seconds, lifting an oxygen lance by 200 millimeters when blowing for 4.5 minutes, continuously adding 4 to 5 batches of ores, and uniformly controlling the heating speed of a molten pool to increase the FeO content of slag; when blowing to 7 minutes, properly lowering the lance for 50 to 100 millimeters, meanwhile, reducing the oxygen pressure to 0.80MPa, and continuously adding 2 to 3 batches of rest lime; and keeping the position of the final point pressure lance at 1,000 millimeters for 1 minute. By adopting the method, full-process slag smelting can be realized, the slag is not re-dried, a good phosphorus removal effect is obtained, the phosphorus removal rate is improved by 10 percent compared with the conventional smelting process, and the requirement for smelting the molten iron with a high content of phosphorus can be met.
Owner:LAIWU STEEL YINSHAN SECTION CO LTD

Solid lubricating high-temperature anti-wearing powder composition and preparation method of compound coating of composition

InactiveCN102836996ASignificant progressImprove high temperature wear resistance and friction reduction performanceLiquid/solution decomposition chemical coatingDecompositionEvaporation
The invention relates to a solid lubricating high-temperature anti-wearing powder composition and a preparation method of a compound coating of the composition. The powder composition comprises the following components in percentage by mass: 14-17.5% of nickel, 3-3.5% of chromium, 49-52.5% of chromium carbide and 25-30% of tungsten disulfide with a surface coated by an alloy-phosphorus alloy. A solid self-lubricating high-temperature anti-wearing compound coating is prepared by the powder composition through utilizing a laser smelting technology. According to the invention, NiCr-Cr3C2 compound powder is used as a metal substrate and the compound coating is formed by a ceramic anti-wearing phase and a metal toughening phase; WS2 is a solid lubricating phase and one layer of a micron-grade Ni-P alloy is coated on the surface of a WS2 powder grain by utilizing a chemical plating method, so that the thermal stability and the chemical stability of WS2 are increased, the decomposition and evaporation of the WS2 in a laser smelting process are effectively inhibited and the compatibility of the WS2 and the metal substrate is increased; and the compound material coating has the characteristic of high-temperature self-lubricating wearing resistance.
Owner:SUZHOU UNIV

Smelting process of high-carbon bearing steel

The invention discloses a smelting process of high-carbon bearing steel. High-alkalinity refining slag with the alkalinity value of 6-9 is obtained through adding conditioned slag and a deoxidizing agent, so that relatively good desulfuration and deoxidization effects are achieved, the content of S can be reduced to about 0.002%, and the content of O can be reduced to be less than 7ppm. Meanwhile, in order to avoid brittle impurity generation caused by overhigh alkalinity of refining slag, the content Al of the molten steel is strictly controlled in a smelting process, enough aluminum blocks for deoxidizing are added at one step in a tapping process, and no aluminum is replenished in the subsequent process, so that a deoxidized product is prevented from being floated; the content of Al in the refining slag is controlled at about 0.010%, so that secondary oxidation caused in a pouring process is reduced. On the other hand, the value of CaO/Al2O3 in the refining slag is controlled at about 1.7, so that the melting point of slag is relatively low, the flowability of the slag is relatively good, the steel slag is easy to separate, and the slag rolling and reduction reaction of molten steel in a vacuumizing process are reduced. Therefore, D-type inclusions in the bearing steel are effectively prevented from being increased, and the rating standards of inclusions in the bearing steel are reached.
Owner:ZENITH STEEL GROUP CORP +1

Smelting process for production of super-low sulphur steel

InactiveCN102534120AStable controlFast and stable controlManufacturing convertersSteelmakingAlkalinity
A smelting process for the production of super-low sulphur steel belongs to the technical field of steelmaking, and adopts the process route of molten iron magnesium jetting desulfuration pretreatment-converter smelting-ladle dusting-LF Furnace refining-RH refining-continuous casting. The smelting process is characterized in that the molten iron pretreatment adopts magnesium particle jetting for desulfuration; the converter smelting adopts high-grade steel scrap and lime; during tapping, ferro-aluminum is used for strong deoxygenation and slag surface deoxygenation is conducted; the ladle dusting is used for controlling reasonable jetting speed and dust consumption; the LF Furnace refining is used for controlling the feeding quantity of high-alkalinity refining slag and the bottom jetting flow rate of a ladle; and after refining, the oxidizing property and the alkalinity of steel slag are guaranteed. The invention has the advantages that super-low sulphur steel making can be realized fast on the condition that the sulphur content at the end point of the converter cannot be controlled stably; the dusting desulfuration jetting of the ladle lasts for 10 to 15 min; the desulfuration during the LF Furnace refining lasts for 15 to 30 min; the content of sulphur in steel can be controlled within 0.0010 percent fast and stably; and the batch stable control of super-low sulphur steel can be realized.
Owner:SHOUGANG CORPORATION

Smelting method of HIC (Hydrogen Induced Crack)/SSCC (Sulfide Stress Corrosion Cracking)-preventing steel

The invention discloses a converter smelting and external refining control method of HIC (Hydrogen Induced Crack)/SSCC (Sulfide Stress Corrosion Cracking)-preventing steel. A smelting process route of converter-CAS (Control Automatic System) station-LF (Low Frequency) refining-VD (Vacuum Distillation)/RH (Relative Humidity) vacuum-calcium treatment-soft blowing-continuous casting is adopted. Low-phosphor requirements of the HIC/SSCC-preventing steel are obtained through controlling the converter smelting process route; and meanwhile, part of deoxidation type inclusions are removed by carrying out strong deoxidation, alloying as well as residue washing in a converter steel-tapping process, and over 60% of sulfur in molten steel is removed by sufficient stirring of the residue washing. In the LF refining process, refining furnace slag which is high in alkalinity, high in Al2O3 and strong in reducibility is obtained by regulating components of the refining furnace slag, and the inclusions are transformed and removed towards a low melting point by virtue of balance of the furnace slag-molten steel-inclusions. Proper vacuum treatment time and vacuum degree are kept at a vacuum treatment furnace so as to remove part of gas and inclusions, excessive calcium line is fed into the molten steel after being broken in air, and then the molten steel is softly blown and stirred for over 20 minutes to obtain the molten steel with ultralow oxygen and ultralow sulfur.
Owner:HUNAN VALIN XIANGTAN IRON & STEEL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products