Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3390 results about "Terminal point" patented technology

Mobile robot path planning and obstacle avoidance method and system

The invention discloses a mobile robot path planning and obstacle avoidance method and system. The mobile robot path planning method comprises the following steps: establishing a two-dimensional grid map by utilizing known obstacle environment information; in the two-dimensional grid map, establishing a global coordinate system at the place of a mobile robot, and setting a starting point and a terminal point of the mobile robot; determining the shortest path between the starting point and the terminal point through a jump point search algorithm, wherein the shortest path comprises a plurality of local target points connected in sequence; and in the process of controlling the mobile robot to move to each of the local target points, utilizing a local obstacle avoidance algorithm to avoid a dynamic obstacle. The mobile robot path planning and obstacle avoidance method adopts the jump point search algorithm to obtain the shortest path quickly, so that path search efficiency can be improved, and storage space is saved; and through the local obstacle avoidance algorithm, accuracy and real-time performance of mobile robot path planning and obstacle avoidance can be ensured, and autonomous navigation of the mobile robot is realized.

Full spectrum endpoint detection

A method of endpoint detection during plasma processing of a semiconductor wafer comprises processing a semiconductor wafer using a plasma, detecting radiation emission from the plasma during the semiconductor processing, and tracking data points representing changes in spectra of the radiation as a function of time during the semiconductor processing. At any point prior to or during processing a plurality of profiles are provided, each profile representing a different processing condition affecting detection of the desired plasma processing endpoint of the semiconductor wafer. After selecting a desired profile, a first set of parameters are input, representing simplified values for determining when changes in spectra of the radiation indicate that plasma processing of the semiconductor wafer reaches a desired endpoint. The selected profile converts the input first set of parameters into a larger, second set of parameters, and then applies the second set of parameters to an algorithm that converts data points from the spectra of the radiation as a function of time into an endpoint curve. The method then uses the algorithm to track changes in spectra of the radiation as a function of time and determine when plasma processing of the semiconductor wafer reaches a desired endpoint.

Multicast transfer route setting method, and multicast label switching method for implementing former method

A method of establishing a multicast transfer route is disclosed that can reduce the cost of entire route under a constraint on delay incurred between starting point and ending points. The method includes the steps of: computing the shortest route with respect to delay connecting the starting point and the plural ending points based on measurement result; computing delay from a node on the shortest route to each ending point and the greatest delay; removing, if the greatest delay satisfies a delay condition, the greatest-cost route from the shortest route in accordance with selection criteria effective for cost reduction; dividing the multicast transfer route into two route trees; and establishing separately computed route as a complementary route that complement the removed route for connecting the two route trees. A method of multicast label switching for realizing the above method is also disclosed. A multicast label switching route is established using hierarchical labels by establishing a common multicast label switching route using a first layer label and establishing plural partial multicast label switching routes for subgroup destinations using lower layer labels. A relay node recognizes the hierarchical labels thereby to label-switch using all hierarchical labels.

Indoor live-action navigation method and system

The invention discloses an indoor live-action navigation method and system. The method comprises the steps that a mobile terminal collects live-action images of the current position, the live-action images are matched with a first live-action image stored in an indoor live-action image database, and an initial coordinate of the current position is obtained; the position of a pedestrian is positioned and tracked in real time through a multi-source sensor fused position algorithm, and when the mobile terminal detects that the position of a user changes, a real-time position result and a walking trajectory are output; a second live-action image, closest to the indoor position result, in the indoor live-action image database is obtained according to the real-time indoor position result; the mobile terminal obtains a starting point and an ending point which are input by the user in the navigation process, a forward direction is obtained, a direction guided arrow is added on the second live-action image, and live-action navigation is conducted. By means of the indoor live-action navigation method and system, according to the position where the pedestrian is located, the live-action navigation images can be pushed automatically, the best navigation image visual angle can be judged automatically, and route guidance information such as the arrow is overlapped on the navigation images.

Plasma ashing apparatus and endpoint detection process

InactiveUS20040235299A1Enhance photoresist removalFlexible process platformElectric discharge tubesSemiconductor/solid-state device manufacturingNitrogen plasmaCombustion chamber
A plasma ashing apparatus for removing organic matter from a substrate including a low k dielectric, comprising a first gas source; a plasma generating component in fluid communication with the first gas source; a process chamber in fluid communication with the plasma generating component; an exhaust conduit in fluid communication with the process chamber; wherein the exhaust conduit comprises an inlet for a second gas source and an afterburner assembly coupled to the exhaust conduit, wherein the inlet is disposed intermediate to the process chamber and an afterburner assembly, and wherein the afterburner assembly comprises means for generating a plasma within the exhaust conduit with or without introduction of a gas from the second gas source; and an optical emission spectroscopy device coupled to the exhaust conduit comprising collection optics focused within a plasma discharge region of the afterburner assembly. An endpoint detection process for an oxygen free and nitrogen free plasma process comprises monitoring an optical emission signal of an afterburner excited species in an exhaust conduit of the plasma asher apparatus. The process and apparatus can be used with carbon and/or hydrogen containing low k dielectric materials.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products