Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4023results about How to "Stable control" patented technology

Protective enclosure and watertight adapter for an interactive flat-panel controlled device

A protective enclosure is disclosed for an interactive flat-panel control device. The protective enclosure is watertight, crush-resistant, and impact-resistant. An electrical adapter may disposed within the protective enclosure and covered with an elastomeric covering that permits a connector of the adapter to flex with respect to the lower shell of the enclosure so that the connector may easily be inserted into an interface jack of the electronic device. The elastomeric covering also provides a watertight seal that enables the protective enclosure to be submersibly watertight. While providing protection, the protective enclosure simultaneously allows smooth and accurate interaction with the interactive flat-panel controlled device. The protective enclosure has a protective membrane that permits RF and touch screen stylus inputs, as well as capacitance, such as from a finger, to be transmitted accurately to the flat-panel control. The hardness and texture of the protective membrane allows a stylus or finger to glide smoothly along the surface of the membrane without catching or sticking. The protective enclosure is further adapted to allow infrared and other communication signals while the device is secured inside the case. Further, electrical connections can be made through the case without affecting the protection afforded the electronic device inside. The protective enclosure may have a removable cable management belt clip that has a flange that retains and prevents entangling of an accessory cable for the interactive flat-panel control device.
Owner:OTTER PRODS

Protective enclosure and watertight adapter for an interactive flat-panel controlled device

A protective enclosure is disclosed for an interactive flat-panel control device. The protective enclosure is watertight, crush-resistant, and impact-resistant. An electrical adapter may disposed within the protective enclosure and covered with an elastomeric covering that permits a connector of the adapter to flex with respect to the lower shell of the enclosure so that the connector may easily be inserted into an interface jack of the electronic device. The elastomeric covering also provides a watertight seal that enables the protective enclosure to be submersibly watertight. While providing protection, the protective enclosure simultaneously allows smooth and accurate interaction with the interactive flat-panel controlled device. The protective enclosure has a protective membrane that permits RF and touch screen stylus inputs, as well as capacitance, such as from a finger, to be transmitted accurately to the flat-panel control. The hardness and texture of the protective membrane allows a stylus or finger to glide smoothly along the surface of the membrane without catching or sticking. The protective enclosure is further adapted to allow infrared and other communication signals while the device is secured inside the case. Further, electrical connections can be made through the case without affecting the protection afforded the electronic device inside. The protective enclosure may have a removable cable management belt clip that has a flange that retains and prevents entangling of an accessory cable for the interactive flat-panel control device.
Owner:OTTER PRODS

Wind turbine having a control method and controller for performing predictive control of a wind turbine generator

The application describes a wind turbine having a control method and controller for performing predictive control of a wind turbine generator. Based on the measured instantaneous wind speed, it is known to provide control signals to a wind turbine in order to control the pitch of the wind turbine rotor blades and the speed of the generator. However, it is difficult using instantaneous wind speed measurements to achieve smooth control, due to finite response speeds of the associated electro-mechanical systems, as well as the constantly changing control system inputs. The predictive control system described in the application assumes a model of generator speed based on the values of the incident wind speed v(t) and the values of a control signal u(t) output to the wind turbine in a feed forward loop. Here, the control signal can be for one or more of controlling either the power setting of the generator, or the pitch angle of the rotor blades. The predictive controller uses a rolling time series of values for v(t) and u(t) and based on a predicted response of the generator speed w(t) optimises the time series control signal u(t). The predicted response of the generator speed w(t) is based on model, that can be refined in real time as the wind turbine operates.
Owner:VESTAS WIND SYST AS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products