Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

9655 results about "Cyclic stability" patented technology

Process for producing nano graphene reinforced composite particles for lithium battery electrodes

A process for producing solid nanocomposite particles for lithium metal or lithium ion battery electrode applications is provided. In one preferred embodiment, the process comprises: (A) Preparing an electrode active material in a form of fine particles, rods, wires, fibers, or tubes with a dimension smaller than 1 μm; (B) Preparing separated or isolated nano graphene platelets with a thickness less than 50 nm; (C) Dispersing the nano graphene platelets and the electrode active material in a precursor fluid medium to form a suspension wherein the fluid medium contains a precursor matrix material dispersed or dissolved therein; and (D) Converting the suspension to the solid nanocomposite particles, wherein the precursor matrix material is converted into a protective matrix material reinforced by the nano graphene platelets and the electrode active material is substantially dispersed in the protective matrix material. For a lithium ion battery anode application, the matrix material is preferably amorphous carbon, polymeric carbon, or meso-phase carbon. Such solid nanocomposite particles provide a high anode capacity and good cycling stability. For a cathode application, the resulting lithium metal or lithium ion battery exhibits an exceptionally high cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Multi-element composite nano-material, preparation method thereof and application thereof

The invention provides a multi-element composite nano-material for a super capacitor, and a preparation method of the nano-material. The nano-material comprises a carbon material, metal oxide and conducting polymer, and components of the nano-material can be two or more than two materials. By the aid of the characteristics such as fine electrical conductivity, long cycle life and high specific surface area of the carbon material, high pseudo-capacitance of the metal oxide and low internal resistance, low cost and high operating voltage of the conducting polymer, different types of electrode materials generate synergistic effects, advantages are mutually combined, shortcomings are mutually weakened, the energy storage characteristics of an electric double-layer capacitor and a pseudo-capacitor are simultaneously made full use of, a composite electrode material with high power density, fine circulating stability and higher energy density is prepared, and the multi-element composite nano-material is excellent in comprehensive performance when used for an electrode of the super capacitor, has the advantages of simple preparation process, short cycle, low cost and the like, and is suitable for large-scale industrial production.
Owner:中科(马鞍山)新材料科创园有限公司

Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof

The invention discloses a graphene / molybdenum disulfide (MoS2) compound nano material lithium ion battery electrode and a preparation method thereof. The electrode comprises the following components in percentage by mass: 75 to 85 percent of compound nano material serving as an active substance, of a graphene nano slice and MoS2, and 5 to 10 percent of acetylene black and 10 percent of polyvinylidene fluoride; and the mass ratio of the graphene nano slice to the MoS2 nano material in the compound nano material active substance is (1 to 1)-(4 to 1). The preparation method of the electrode comprises the following steps of: preparing an oxidized graphite nano slice by using graphite as a raw material by a chemical oxidization method; synthesizing by a one-step hydrothermal in-situ reduction method in the presence of the oxidized graphite nano slice to obtain a graphene nano slice / MoS2 compound nano material; and finally, preparing the electrode by using the graphene nano slice / MoS2 compound nano material as the active substance. The electrode has high electrochemical lithium storage reversible capacity and cyclic stabilization performance, and can be widely applied to new generation lithium ion batteries.
Owner:ZHEJIANG UNIV

Lithium battery with polymer-coated sulfur/carbon composite material as anode

The invention relates to a lithium battery with a polymer-coated sulfur/carbon composite material as an anode. According to the invention, sublimed sulfur or sulfur powder and a conductive carbon material are mixed according to a mass ratio of 3:7-8:2; the mixture is subject to ball milling, such that a sulfur/carbon composite material is obtained; the composite material is dispersed in a solution, and a polymer monomer is added to the solution; under a low temperature and the protection of inert gas, an oxidizing agent is added for initiating polymerization; the material is centrifuged, washed, and dried; the obtained polymer-coated elemental sulfur/carbon composite material, acetylene black and PTFE are mixed; a dispersant is added to the mixture, and the mixture is sufficiently mixed by stirring; the mixture is rolled into a sheet, and is vacuum-dried under a temperature of 55 DEG C, such that an electrode sheet is obtained. The prepared electrode sheet is adopted as an anode, metal lithium is adopted as a cathode, and a solvent type organic solution system containing 0.2mol/L of a waterless lithium nitrate additive is adopted as electrolyte, and a battery is assembled. With the electrode material, the assembled lithium battery is advantaged in high specific capacity, good circulation stability, and excellent heavy-current charge/discharge performances. The preparation method is advantaged in simple process, low cost, and good repeatability.
Owner:NANKAI UNIV

All-solid state lithium ion battery composite positive electrode material and preparation method thereof, and all-solid state lithium ion battery

Embodiments of the present invention provide an all-solid state lithium ion battery composite positive electrode material, which comprises a positive electrode active material and a cladding layer arranged on the surface of the positive electrode active material, the positive electrode active material is one or a plurality of materials selected from a lithium cobalt oxide, lithium nickelate, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganese, vanadium pentoxide, molybdenum trioxide and titanium disulfide, and the cladding layer material is one or a plurality of lithium-containing transition metal oxides. According to the present invention, with the cladding layer, formation of the space charge layer can be effectively inhibited, the electrode / inorganic solid state electrolyte interface can be improved, and the interface resistance of the all-solid state lithium ion battery can be easily reduced so as to improve cycle stability and durability of the all-solid state lithium ion battery. Embodiments of the present invention further provide a preparation method for the all-solid state lithium ion battery composite positive electrode material, and an all-solid state lithium ion battery containing the all-solid state lithium ion battery composite positive electrode material.
Owner:泰州市海通资产管理有限公司

Biomass hard carbon negative electrode material for sodium ion battery, preparing method and sodium ion battery

The invention relates to a biomass hard carbon negative electrode material for a sodium ion battery, a preparing method and the sodium ion battery and belongs to the technical field of sodium ion energy storage equipment. The biomass hard carbon negative electrode material is prepared through the method including the following steps that firstly, a biomass raw material is smashed, and precursor particles are obtained; secondly, in a protection atmosphere, the precursor particles are heated to 400-600 DEG C to be pre-sintered for 1.5-2.5 h, then cooled to the room temperature along with a furnace, then heated to 800-1600 DEG C to be sintered for 2-5 h and cooled, and an intermediate is obtained; thirdly, the intermediate is put into an alkali solution to be soaked, taken out, then put into an acid solution to be soaked, then washed with water to be neutral and dried, and a purified product is obtained; fourthly, the purified product is subjected to microwave vacuum activation for 3-15 s at the power of 1000-2000 W, and then the biomass hard carbon negative electrode material is obtained. The first-time charging and discharging efficiency of the obtained biomass hard carbon negative electrode material reaches up to 90% or above, the circulation stability is good, the reversible specific capacity is 300 mAh / g or above, and the biomass hard carbon negative electrode material has a good electrochemical property.
Owner:浙江瓦司特钠科技有限公司

Preparation method of composite lithium metal anode

The invention discloses a preparation method of a composite lithium metal anode and belongs to the technical field of lithium metal batteries. The preparation method of the composite lithium metal anode comprises steps as follows: firstly, the surface of a framework material is modified, the framework material with the lithiophilic surface is prepared, the framework material is contacted with liquid metal lithium, so that the liquid metal lithium is injected into the framework material with the lithiophilic surface, and the composite lithium metal anode is prepared after cooling. The lithiophilic surface can be obtained through modification of various framework materials (including a conductive framework material and an insulated framework material), the framework materials are efficientlycomposited with the liquid metal lithium, and the composite lithium metal anode material is obtained. When the obtained composite lithium metal anode material is assembled in a total battery, growthof lithium dendrites can be effectively inhibited, the volume expansion effect of the anode is relieved, the pulverization phenomenon of the lithium metal anode is reduced, and the cycling stability and the safety of the lithium metal battery are substantially improved, and the cycle life of the lithium metal battery is substantially prolonged.
Owner:TSINGHUA UNIV

Preparation method of complex lithium negative pole of solid state battery

The present invention discloses a preparation method of a complex lithium negative pole of a solid state battery, and belongs to the technical field of electrochemistry and new energy resources. The preparation method mainly comprises the steps: depositing lithium metal on three-dimensional carbon material or foam porous material gaps by using a heat infusing melting method or an electrodeposition method to obtain the complex lithium negative pole, wherein the application of a three-dimensional framework plays two roles, namely, providing adequate space for pre-storing lithium in the preparation process; providing a carrier for receiving metal lithium in a battery circulation process. The complex lithium negative pole can be widely applied in lithium metal batteries such as lithium ion batteries, lithium-air batteries, lithium-sulfur batteries, and solid state batteries. In the assembled symmetric solid state battery, under large electric current density of 5mA cm-2, a stable voltage decay (200mV) can still be kept after circulation for 100 times, in the battery circulation, the growth of lithium dendrites can be inhibited and the pole volume change can be stabilized, and the advantages of being good in circulation stability, and long service life can be realized; in the present invention, a carrier material is rich, and low in price; the process is controlled, the cost is low, and the batch production can be realized.
Owner:UNIV OF SCI & TECH BEIJING

Lithium ion battery anode material manganese lithium phosphate and preparation method thereof

The invention discloses a manganese/lithium phosphate of lithium iron battery positive pole material and a production method thereof, the technical issue to be solved is to improve electrochemical performances of the positive pole material. The material of the invention includes substrates of manganese/lithium phosphate which are covered by a carbon material covering layer, the lithium covering the manganese/lithium phosphate behind the carbon material covering layer is spherical and has microscopic characteristics of being near spherical, rhombic, tapered, tabular, layered or/and block-shaped as well as of having 0.5-30 mum long and short axles. The production method comprises the following steps of: production of nanometer particles, liquid phase mixed reaction, production of precursor, sintering treatment, covering organic substances. Compared with the prior art, the invention improves the electron conductivity of the manganese/lithium phosphate by covering with carbon liquid phase, the carbon sufficiently covers active materials to efficiently prevent particle aggregation, the invention has the characteristics of about 4V of discharge voltage, high discharge and charge capacitance, excellent circulation stability, high safety, simple process, low cost and little influence on the environment.
Owner:SHENZHEN CITY BATTERY NANOMETER TECH

Synthesis and surface modification method of lithium excessive laminar oxide anode material

The invention relates to a synthesis and surface modification method of a lithium rich anode material Li1+xM1-xO2 (M is one or more of Ni, Co and Mn, and X is more than or equal to 0 and less than or equal to 1/3) for a lithium ion battery. The method comprises the following steps of: synthesizing a precursor by using a carbonate precipitation method, mixing the precursor and a lithium salt, and calcining for 2 to 20 hours at the temperature of between 800 and 1,100 EG C to obtain a lithium rich material, wherein the prepared lithium rich material has controllable particle size and higher reversible capacity; and dissolving persulfate or sulfate in an amount which is 5 to 80 mass percent of the lithium rich material into deionized water, adding the lithium rich material, stirring for 2 to 100 hours at the temperature of between 25 and 80 DEG C, heating the materials to the temperature of between 100 and 500 DEG C in a muffle furnace, calcining the materials for 2 to 20 hours, fully filtering the obtained materials, and washing off impurities to obtain the surface modified anode material Li1+x-yM1-xO2. The synthesized lithium rich material has controllable particle size; the first charge/discharge efficiency of the lithium rich material and the discharge specific capacity and the cyclical stability under high magnification can be improved; and the method is simple, low in cost, convenient for operation and suitable for industrialized production.
Owner:GUANGZHOU HKUST FOK YING TUNG RES INST

Lithium ion battery silicon carbide composite anode material and preparation method thereof

The invention discloses a lithium ion battery silicon carbide composite anode material and a preparation method thereof and aims to solve the technical problem of improving the cycling stability of a silicon carbide cathode. The lithium ion battery silicon carbide composite anode material consists of the following components in percentage by mass: 85 to 75 percent of graphite and 15 to 25 percent of silica particles, wherein the nano silica particles are dispersed on a graphite carrier to form a nuclear shell structure and are 5 to 16 mum in granularity. The preparation method comprises the following steps of: preparing a graphite dispersing agent and a silicon grinding dispersing agent; adding the silicon grinding dispersing agent into the graphite dispersing agent; and performing thermal treatment. When the method is compared with the prior art, silicon atoms are dispersed on a graphite atomic nucleus by a cation-anion charge absorption method, so that the silicon atoms can uniformly wrap the surface of the graphite, the dispersity of silicon is effectively improved in a silicon carbide composite material preparing process, the initial efficiency and the cycling stability of the silicon carbide composite anode material are improved, and a battery using the material as an anode material has relatively high safety, multiplying power performance and cycle performance.
Owner:BTR NEW MATERIAL GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products