Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

185 results about "Raman pump" patented technology

Automatic raman gain and tilt control for ultra-long-distance dense WDM optical communication system

An approach for automatic Raman gain and tilt control for a WDM (Wavelength Division Multiplexing) optical communication systems is disclosed. An optical fiber carries a plurality of optical signals, in which at least one of the optical signals are reference signals. An optical gain unit (e.g., Raman pump unit) couples to the optical fiber and adjusts the reference signals to compensate, in part, for losses associated with the optical fiber and gain tilt accumulation. Upon detecting and analyzing the reference signals, a controller controls the optical gain unit and outputs a control signal to the optical gain unit based upon the analyzed reference signals. An optical amplifier is connected to the optical fiber and amplifies the optical signals. The optical gain unit provides a nearly constant power per channel at an input of the optical amplifier. Under this approach, a Raman gain control mechanism, combined with the use of gain controlled EDFA (Erbium Doped Fiber Amplifier), allows high transmission capacity over ultra-long distances without optical regeneration and with high flexibility.
Owner:CISCO TECH INC

Apparatus and method for raman spectroscopy and microscopy with time domain spectral analysis

An apparatus and method for measuring Raman-type spectra using optical dispersion to convert an optical spectrum into a waveform which can be detected directly in the time domain without the use of a conventional spectrometer. In the example of stimulated Raman spectroscopy, the apparatus and method exposes a sample to a chirped, pulsed probe beam and a Raman pump beam and the resulting Raman spectra is detected by an optical detector in the time domain, and analyzed. Alternatively, the Raman spectra from the probe and pump beams is chirped with a dispersive element prior to detection and analysis. Each probe pulse provides a snapshot of the Raman spectrum that is sampled in time so that neither repetitive waveforms nor static samples are required. Therefore, high speed acquisitions and high throughput assays can be conducted. To facilitate detection, these spectral signals can also be amplified using distributed Raman amplification directly in the dispersive element.
Owner:RGT UNIV OF CALIFORNIA

Optical amplifiers, optical fiber raman amplifiers and optical systems

An object of the present invention is to prevent an interruption circuit of an optical amplifier from malfunctioning due to Raman pump wave. A typical mode of the present invention is characterized in that an pump wave elimination filter is inserted before an input-light detector and a reflected-light detector which constitute the optical amplifier. This permits only a signal component to be detected, enabling interruption operation, while eliminating a remaining component of Raman pump wave transmitted from for example a downstream of an optical fiber transmission line. In addition, a judgment threshold value for the interruption operation is changed according to ON / OFF condition of the pump wave. Or the Raman pump wave itself is used for detecting output's open.
Owner:HITACHI LTD

Novel optical fiber Brillouin light time domain analyzer

The invention discloses an optical fiber Brillouin optical time domain analyzer, which is made based on optical fiber broadband nonlinear light amplification effect and strain, temperature effect and optical light domain analysis principle of coherent amplified Brillouin scattering. The optical fiber Brillouin optical time domain analyzer comprises a narrowband single-frequency fiber laser, a fiber beam splitter, a pulse modulator, two optical fiber circulators, a heterodyne receiver, a digital signal processor, a fiber-grating filter, a monomode fiber and a continuous-operating fiber Raman pump laser. The continuous-operating high-power fiber Raman pump laser is used as the pump light source of the Brillouin optical time domain analyzer, which can overcome the difficulty in strictly locking the frequency of a detection laser and the pump laser of the Brillouin optical time domain analyzer; and boardband fiber nonlinear scattering amplification is used for substituting for narrowband Brillouin amplification to increase the gain of stimulated Brillouin scattering with back amplification, thus improving the S / N ratio of the system, increasing the measurement length, and improving the accuracy for simultaneous measurement of stain and temperature.
Owner:WEIHAI BEIYANG PHOTOELECTRIC INFORMATION TECH

Optical transmission link including raman amplifier

An optical transmission system that employs a Raman amplifier including a Raman pump for introducing depolarized pump light into the fiber. The pump includes an optical source generating a polarized optical pump signal, an optical splitter that splits the pump signal into a first pump portion and a second pump portion, and a beam combiner that combines the first pump portion and the second pump portion into the depolarized pump light. Further, the pump includes a delay device, such as a length of fiber, that causes the first pump portion to propagate farther from the beam splitter to the beam combiner than the second pump portion. The length of fiber is longer than the coherence length of the pump signal.
Owner:JDS UNIPHASE CORP

Optical transmission system using Raman amplification

A commercially viable All-Raman system, is implemented by removing the dispersion compensating Fiber (DCF) and two stage amplifier at each span, and including a transmission path dispersion compensator which performs dispersion compensation on a transmission path basis. For example, by pre-compensating for the accumulated dispersion in the electrical domain at the transmitter, the gain of the Raman pumps at each span amplifier need only compensate for the loss within the span, without needing to compensate for the loss of a DCF. In addition there is provided a low-cost method for implementing a bidirectional Service Channel by modulating / demodulating low-rate data on the Raman pump. For example, a Raman amplifier can include an information source for producing a service channel signal which includes information to be communicated; and a modulator for modulating the Raman pump signal with the service channel signal.
Owner:CIENA

Monolithic semiconductor light source with spectral controllability

The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
Owner:AHURA CORP

Distributed optical fiber Brillouin sensor fused with optical fiber Brillouin frequency shifter

The invention discloses a distributed optical fiber Brillouin sensor fused with an optical fiber Brillouin frequency shifter, which is a distributed optical fiber sensor manufactured through the frequency shift effect of Brillouin scattering of an optical fiber, an optical fiber broadband nonlinear optical amplification effect, the strain and temperature effects of Brillouin scattered light of coherent amplification, and an optical time domain analysis principle, and comprises a narrow linewidth single frequency optical fiber laser, three optical fiber branching devices, a pulse modulator, the optical fiber Brillouin frequency shifter, two optical fiber circulators, an erbium-doped optical fiber amplifier, a polarization mode scrambler, an optical fiber narrowband reflection filter, an optical fiber Raman pump laser, a single-mode sensing optical fiber, an optical fiber filter, a photoelectric reception amplifier module, two digital signal processors, a photoelectric heterodyne reception amplifier module and a computer, wherein the optical fiber Brillouin frequency shifter is formed by connecting the circulators, the single-mode optical fiber and the optical fiber Fabry-Perot (F-P) filter in turn. The sensor has a simple structure, low price and high measuring accuracy and stability.
Owner:CHINA JILIANG UNIV

Monolithic semiconductor light source with spectral controllability

The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
Owner:AHURA CORP

System for amplifying optical signals

The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
Owner:AHURA CORP

Brillouin optical time domain analyzing and sensing system based on ultra-long annular laser pumping

The invention discloses a Brillouin optical time domain analyzing and sensing system based on ultra-long annular laser pumping. The Brillouin optical time domain analyzing and sensing system based on the ultra-long annular laser pumping comprises first-order raman pump light (16) with the wavelength of 13 xxnm, a wavelength division multiplexer WDM pair (17) and a sensor fiber (18), wherein the wavelength division multiplexer and the sensor fiber form an ultra-long distance annular laser resonant cavity, the first-order raman pump light is fed back by the annular laser resonant cavity to generate lasing light with the wavelength of 14 XXnm. The lasing light with the wavelength of 14 XXnm performs second-order raman amplification on probe light with wavelength of 15 XXnm and Brillouin pumping. In comparison with a Brillouin sensing system based on linear cavity amplification, sensing signals are distributed more smoothly along the optical fiber, and the consistency of sensing quality in the whole process is remarkably improved; noise transfer of pumping-signal relative strength can be effectively suppressed, and temperature, spatial resolution of strain detection and measurement accuracy can be substantially improved; due to the fact that an extra second-order pump light source does not need to be added, substantial stretching of the sensing distance is obtained with low cost, and the Brillouin optical time domain analyzing and sensing system based on the ultra-long annular laser pumping has certain practicability.
Owner:饶云江

Long-distance polarization and phase-sensitive optical time-domain reflectometry based on random laser amplification

A long-distance polarization and phase-sensitive reflectometry based on random laser amplification for extending a sensing distance includes a long-distance polarization and phase-sensitive reflectometry of a distributed Raman amplification based on optical fiber random lasers generated by unilateral pumps, a long-distance polarization and phase-sensitive reflectometry of a distributed Raman amplification based on optical fiber random lasers generated by bilateral pumps, and a long-distance polarization and phase-sensitive reflectometry of a Raman amplification based on a combination of optical fiber random lasers generated by unilateral pumps and a common Raman pump source, which are applied in optical fiber perturbation sensing and have a capability of greatly improving a working distance of a sensing system and a high practicability.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Repeater otdr using repeater based raman pumps

A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.
Owner:NEPTUNE SUBSEA IP LTD

In-Service Optical Time Domain Reflectometry Utilizing Raman Pump Source

An arrangement for providing real-time, in-service OTDR measurements in an optical communication system utilizing distributed Raman amplification. One or more of the laser diodes used to provide the pump light necessary to create optical gain is modified to also generate short duration pulses that ride above or below the conventional pump light. These short duration pulses (which co-exist with the pump light within the optical fiber) are used in performing OTDR measurements, with a conventional processing system used to evaluate reflected pulses and create the actual OTDR measurements.
Owner:II VI DELAWARE INC

Long-distance optical fiber vibration sensing system with distributed amplification

The invention discloses a long-distance optical fiber vibration sensing system with distributed amplification. The system comprises a Raman pump laser, a seed laser, a modulator connected with the seed laser, a circulator connected with the modulator, an optical fiber amplification filter connected with the circulator, a photoelectric transducer connected with the optical amplification filter, a collector connected with the photoelectric transducer, and a signal processor connected with the collector. The system has the advantages of capacity of monitoring long-distance border lines, high sensitivity and exact positioning accuracy.
Owner:江西华神智能物联技术有限公司

Method and system for improving sensing performance of long-distance Brillouin optical time domain analysis system

The invention discloses a method and system for improving sensing performance of a long-distance Brillouin optical time domain analysis system. On the basis of the existing long-distance Brillouin optical time domain analysis system which uses a first-order Raman amplification technique, a pair of optical fiber gratings with peak reflectivity being larger than 80 percent and consistent central reflection wavelength are fused on the two sides of sensing optical fibers to form a long-distance laser resonant cavity. Laser generated by the laser resonant cavity is used as a second-order Raman pump and a first-order Raman pump to simultaneously take an effect of amplifying sensing signals. Compared with a Brillouin sensing system which is based on the first-order Raman amplification, under the conditions of the same pump power, the method and the system provided by the invention have the advantages that higher grains can be obtained and the pump efficiency is improved; the sensing signals are distributed more smoothly along the optical fibers; when the system is used for long-distance temperature / stress sensing, the spatial resolution, the measurement accuracy and the sensitivity of the monitoring system can be greatly improved; and the sensing performance is obviously improved at a low cost without increasing an additional second-order pump light source.
Owner:WUXI CHENGDIAN OPTICAL FIBER SENSING TECH

Method and apparatus for conducting RAMAN spectroscopy using a remote optical probe

ActiveUS20070024848A1Maintain sensitivityMinimize any relatively broadband spurious background noise signalRadiation pyrometryCladded optical fibreLight guideSpectroscopy
An optical probe assembly for conveying Raman pump light to a specimen and for conveying a Raman signature from the specimen to an optical spectrum analyzer, the optical probe assembly comprising a light guide, wherein the light guide comprises a core region and a surrounding cladding region, wherein the core region is constructed so as to minimize the creation of a relatively broadband spurious background noise signal when conveying the Raman pump light to the specimen, and the cladding region is constructed so as to satisfy the wave guiding reflection requirements of the Raman pump light and the Raman signature. A Raman spectroscopy system comprising: a laser for producing Raman pump light; an optical probe assembly for conveying the Raman pump light to a specimen and for conveying a Raman signature from the specimen to an optical spectrum analyzer, the optical probe assembly comprising a light guide, wherein the light guide comprises a core region and a surrounding cladding region, wherein the core region is constructed so as to minimize the creation of a relatively broadband spurious background noise signal when conveying the Raman pump light to the specimen, and the cladding region is constructed so as to satisfy wave guiding reflection requirements of the Raman pump light and the Raman signature; and an optical spectrum analyzer for receiving the Raman signature of a specimen and identifying and characterizing the specimen based upon the spectrum of the Raman signature. A method for conducting Raman spectroscopy comprising: producing Raman pump light; conveying the Raman pump light through an optical probe assembly to a specimen and conveying a Raman signature from the specimen through the optical probe assembly to an optical spectrum analyzer, the optical probe assembly comprising a light guide, wherein the light guide comprises a core region and a surrounding cladding region, wherein the core region is constructed so as to minimize the creation of a relatively broadband spurious background noise signal when conveying the Raman pump light to the specimen, and the cladding region is constructed so as to satisfy wave guiding reflection requirements of the Raman pump light and the Raman signature; and identifying and characterizing the specimen based upon the spectrum of the Raman signature.
Owner:AHURA CORP

Raman pump power control for gain flattening

The present invention aims at providing a method for controlling wavelength characteristics of optical transmission powers by Raman amplification, in which the wavelength characteristics of optical transmission powers are automatically compensated without giving any losses to channel lights to thereby improve transmission characteristics, and an apparatus adopting the same. To this end, the method for controlling wavelength characteristics of optical transmission powers by Raman amplification according to present invention supplies Raman pump light to an optical transmission path (Raman amplifying medium); compensates the wavelength characteristics of optical transmission powers caused by transmission of WDM signal light through the optical transmission path, by gain wavelength characteristics of generated Raman amplification; and monitors the wavelength characteristics of optical transmission powers after Raman amplification to thereby control the gain wavelength characteristics of Raman amplification.
Owner:FUJITSU LTD

Non-relay optical fiber transmission system and method

ActiveCN102223183AAchieve improvementElectromagnetic transmissionGratingNonlinear optical loop mirror
The invention discloses a non-relay optical fiber transmission system and method. The non-relay optical fiber transmission system comprises the following components that are sequentially connected with one another by transmission optical fibers: an optical transmitter, an optical power amplifier, an optical pulse expander, an optical fiber, a high-power optical fiber amplifier, a chromatic dispersion compensation module, an optical pulse compressor, a remotely-pumped optical preamplifier, a distributive optical fiber Raman amplifier, an optical preamplifier, a nonlinear optical loop mirror and an optical receiver. The remotely-pumped optical preamplifier is connected with a remotely-pumped source; and the distributive optical fiber Raman amplifier mainly consists of a Raman pumping source, a wavelength division multiplexer and an optical signal transmission fiber arranged behind the remotely-pumped optical preamplifier. In the invention, a linear chirped fiber grating is used for carrying out time-domain broadening on picosecond optical pulse; the picosecond optical pulse is amplified by the high-power amplifier and is transmitted in the optical fiber; the reversely arranged linear chirped fiber grating is used for compressing the time-domain expanded pulse and recovering the time-domain expanded pulse as the picoscond pulse, thus obtaining time spread gain, thereby leading the transmission distance of the non-relay optical fiber transmission system to be extended.
Owner:NO 34 RES INST OF CHINA ELECTRONICS TECH GRP

System for amplifying optical signals

The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
Owner:AHURA CORP

Dynamically spectrally tailored raman pump laser

The present invention is directed to a system and method which provide a Raman pump which is spectrally tailored in response to feedback from control structure associated with the Raman pump source. In certain embodiments of the present inventions, an incoherently beam combined laser (IBC) is utilized to provide a spectrally tailored Raman pump. In these embodiments, emitters in an emitter array are either individually addressable or block addressable to facilitate adjustment of emitter output power. By adjustment of the output power, the Raman pump may be spectrally tailored. The spectral tailoring can occur by employing suitable control algorithms to algorithms to dynamically maintain reasonably flat Raman gain.
Owner:NLIGHT INC

Extender For Optical Access Communication Network

The present invention discloses an optical line terminal that includes one or more downstream signal processing means for generating a downstream signal, and converting data of the downstream signal into a serial data; a wavelength division multiplexing means for combining the serial data of different wavelengths together and then performing transmission of the combined signals; and one or more upstream signal processing means for extracting data of an upstream signal from the wavelength division multiplexing means. The terminal includes an extender including a first optical amplifier for amplifying the upstream signal, a second optical amplifier for amplifying the downstream signal, a Raman wavelength division multiplexing module for separating and combining data signal and pump light from Raman pump unit, and a Raman pump unit coupled to the Raman wavelength division multiplexing module to provide Raman amplification to the upstream and downstream signals.
Owner:TELEKOM MALAYSIA BERHAD

Method and system for improved eye protection safety of distributed Raman amplifiers

A system and method for providing eye-safety protection during operation of distributed Raman amplifiers based on the application of continuous out-of-band amplified spontaneous scattering (ASS) monitoring in an optical communication network span coupled to the Raman amplifier, and real-time detection and analysis of changes in the monitored ASS power level, The system includes at least one Raman pump for introducing Raman energy into the span, a monitoring unit for performing the continuous ASS monitoring, and a control unit operative to detect and analyze in real-time changes in the ASS power, and upon determination that such changes indicate an open span, to reduce the level of the Raman pump energy entering the span to a safe level.
Owner:RED C OPTICAL NETWORKING +1

Low-noise remote pump EDFA

The invention relates to a low-noise remote pump EDFA. The low-noise remote pump EDFA comprises a passive gain unit, an optical cable part and a pump unit part; the passive gain unit is formed by connecting a first optical isolator ISO1, a first wavelength division multiplexer WDM1, a first erbium doped fiber EDF1, a second wavelength division multiplexer WDM2, a second optical isolator ISO2, a gain flattening filter, a third wavelength division multiplexer WDM3, a second erbium doped fiber EDF2, a dichroic mirror and an optical isolator ISO3 in sequence; a pump source is formed by combining an EDFA pump source with a Raman pump source, the Raman pump source is used for amplifying the EDFA pump source, the purpose that pump power injected into the passive gain unit does not change or even is higher under the condition of relative small power of the EDFA pump source is achieved, the non-relay optical transmission distance is prolonged, no cable needs to be laid in the long-distance optical communication optical cable laying process, the laying cost and maintaining cost of circuits are reduced, peak power in the optical cable is reduced, safety of the optical cable is improved greatly, and the maintaining cost of the optical cable is reduced greatly.
Owner:TOEC TECH

Fast dynamic gain control in an optical fiber amplifier

InactiveUS20060187539A1Fast dynamic gain controlQuick controlLaser detailsFibre transmissionFiberWaveguide amplifier
The present invention provides methods and apparatuses for controlling a gain of an optical fiber amplifier. Gain circuitry operates in an opened loop configuration and uses a predetermined function relating a power variation of at least one wavelength region with a pump power adjustment for at least one optical pump. Two approximate linear relationships between the input signal power variations and the required pump power adjustments are utilized in controlling the Raman fiber amplifier. Each approximate linear relationship includes at least one linear coefficient that relates a power variation for a specific wavelength region and a power adjustment of a specific Raman pump. The dynamic gain control technique is applicable to an Erbium-doped fiber / waveguide amplifier. Also, a dynamic gain control technique controls a backward-pumped Raman amplifier, in which the power variation is determined at one geographical location and the optical pumps are controlled at another geographical location.
Owner:AMERICAN TELEPHONE & TELEGRAPH CO

Optical fiber gas cascaded Raman laser capable of realizing 3-5-micron band tuning

The invention provides an optical fiber gas cascaded Raman laser capable of realizing 3-5-micron band tuning. The laser comprises a 1-micron band tunable Raman pump source, a first level gas Raman laser generation device and a second level gas Raman laser generation device, the first level gas Raman laser generation device converts 1-micron pump laser generated by the 1-micron band tunable Raman pump source into first level Raman scattering laser, and the first level Raman scattering laser is laser of 1.5-micron band or 2-micron band; and the second level gas Raman laser generation device converts the first level Raman scattering laser into second level Raman scattering laser, and the second level Raman scattering laser is 3-5-micron band tunable mid-infrared laser. According to the optical fiber gas cascaded Raman laser provided by the invention, the output of 3-5-micron band tunable mid-infrared laser is realized in an anti-resonant hollow fiber with a negative curvature by employing a gas Raman cascading manner for the first time.
Owner:NAT UNIV OF DEFENSE TECH

One-core two-way optical transmission system

In a one-fiber bidirectional optical transmission system in which output optical signals of optical transmitter-receivers respectively connected to the opposite ends of one optical fiber transmission line are bidirectionally transmitted in the optical fiber transmission line, which utilizes a Raman amplification effect by backward pumping, a frequency satisfying the conditions of |fs1−f0|≠|fp2−f0| and |fs2−f0|≠|fp1−f0| is selected, where f0 is a zero dispersion frequency of the optical fiber transmission line, fs1 and fs2 are the frequencies of the first signal and the second signal, respectively, and fp1 and fp2 are frequencies of the first Raman pump light and the second Raman pump light, respectively.
Owner:MITSUBISHI ELECTRIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products