Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3242 results about "Vertical motion" patented technology

Real-time optimal damping control algorithm of automobile semi-active suspension system

The invention relates to an optimal damping control algorithm of a continuous-control-type semi-active suspension system, and the optimal damping control algorithm is researched and developed for meeting the taking comfort of people and automobile driving safety requirements well. The control algorithm comprises the following steps of: measuring automobile body vibration acceleration signals, automobile speed signals and rotation angle signals by utilizing a sensor; sensing the automobile driving road condition and suspension system damping ratio according to the signals measured by the sensor; according to the measured automobile body and automobile wheel vibration acceleration, obtaining the automobile body and automobile wheel vertical motion speed and the relative motion speed between an automobile body and automobile wheels; determining the optimal damping coefficient and the damping force of a shock absorber required under the current automobile speed and road condition according to automobile parameters, outputting stepping motor rotation angle control signals through a controller, and controlling and regulating the area of the damping throttling hole of a controllable shock absorber, so that the semi-active suspension system achieves the required optimal damping and damping force. The semi-active suspension optimal damping control algorithm provided by the invention is simple and easy to implement, has low requirements for the dynamic property of an actuating element, and is beneficial to the applications and popularization of the semi-active suspension.
Owner:SHANDONG UNIV OF TECH

Guide device for production risers for petroleum production with a "dry tree semisubmersible" at large sea depths

A system for use in petroleum production at sea includes a guide frame for one or more riser pipes, on a semisubmersible production vessel. One or more main buoyancy member are arranged separately on at least one riser to carry the main part of the riser's weight. Each riser separately carries a Christmas tree on its top, near a main deck of the vessel. The guide frame comprises vertical main elements extending vertically downwards from the deck, through the splash zone and through the upper, more wave- and current-influenced zone of the sea. The guide frame also includes horizontal guide plates comprising vertically open cells formed of a horizontally arranged framework of beams. Lateral stabilization devices guide the risers' and the main buoyancy members' vertical movement relative to the vessel and restrict horizontal movement of the risers with respect to the guide frame. The guide plates are arranged in at least two levels on the guide frame. A lower guide plate is arranged at the lower ends of the vertical main elements', and a guide plate is arranged just below or near the splash zone. At least one main buoyancy member is held on the riser in level with, and guided by, lateral stabilization devices arranged in one or more guide plates below the upper, more wave- and current-influenced zone near the sea surface. The risers are without buoyancy elements through the splash zone, and thus are less exposed to the water forces in the upper zone of the sea.
Owner:PGS OFFSHORE TECH

Pipetting apparatus with integrated liquid level and/or gas bubble detection

A pipetting apparatus (1) comprises a fluidic space (7), to which a pressure transducer (11) with a pressure sensor (12) is attached with a gas filled space (15). The fluidic space (7) is defined by a pipette tip (2), a first tubing (5) that connects the pipette tip (2) to a pump (4), and an active part (6) of the pump (4). The pipetting apparatus (1) according to the present invention is characterized in that the pipetting apparatus (1) further comprises an impulse generating means (16,18,19) that is in operative contact with a column (10) of system liquid (8) inside the fluidic space (7). The impulse generating means (16,18,19) is designed to induce a vertical movement in this system liquid column (10), which results in a pressure variation in the gas filled space (15) that is pneumatically connected with the fluidic space (7). This pressure variation—as recorded with the pressure transducer (11) and as processed by a first data processing unit (13) during utilization of this pipetting apparatus—is taken as an indicator for the detection of penetration or of quitting of a surface (17) of a liquid, with an orifice (3) of the pipette tip (2), of which liquid an amount is to be aspirated and dispensed. This pressure variation is also taken as an indicator for the detection of the presence or the absence of gas bubbles in the system liquid (8) contained in the fluidic space (7) of this pipetting apparatus.
Owner:TECAN TRADING AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products