Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

271 results about "Solid-state nuclear magnetic resonance" patented technology

Solid-state NMR (ssNMR) spectroscopy is a special type of nuclear magnetic resonance (NMR) spectroscopy, characterized by the presence of anisotropic (directionally dependent) interactions. Compared to the more common solution NMR spectroscopy, ssNMR usually requires additional hardware for high-power radio-frequency irradiation and magic-angle spinning.

Rock core holder compatible with nuclear magnetic resonance

The invention relates to a rock core holder compatible with nuclear magnetic resonance, which can simulate pressures and temperatures of deep reservoirs, perform oil water displacement of a rock core under simulated formation conditions, and simultaneously perform nuclear magnetic resonance on-line measurement. According to the invention, a radio frequency coil is embedded in the rock core holder, and the signal to noise ratio is greatly increased when the rock core holder is compared with a conventional rock core holder. The rock core holder is made of nonmagnetic nonmetal materials, which avoids the damage of the magnetic field uniformity caused by magnetic materials, and also avoids the generation of eddy current in the holder by a pulse gradient. Compared with a conventional rock core holder, the invention not only greatly increases the signal to noise ratio, but also fully ensures the accuracy of nuclear magnetic resonance measurement results at a high temperature and a high pressure. The holder is applicable to on-line measurement of nuclear magnetic resonance relaxation spectra, diffusion-relaxation two-dimensional spectra, and imaging methods during rock core oil water displacement at a high temperature and a high pressure. In addition, the invention performs real-time tracking compensation of temperatures and pressures of ring-crush fluid, and thus ensures the reliability of rock core simulated formation conditions.
Owner:PEKING UNIV

Shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance

The invention discloses a shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance. The shale gas reservoir pore structure quantitative calculation methodcomprises the following steps: collecting cores; drilling parallel samples, carrying out oil and water self-adsorption nuclear magnetic resonance experiment measurement; contrastively analyzing the difference of a parallel sample oil and water nuclear magnetic resonance T2 spectrum, and determining the distribution of different wetting pore types on the nuclear magnetic resonance T2 spectrum; obtaining a shale gas reservoir full-pore distribution curve according to high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; furthermore, obtaining an intersection plate of pore diameters and corresponding T2 time; and according to the intersection plate of different pore types of pore diameters and corresponding T2 time, establishing a quantitative calculation model of the pore diameters according to the pore types. The method has the advantages that a shale gas reservoir pore full-pore distribution curve can be quantitatively calculated through the technology;simultaneously, the nuclear magnetism measurement is quick, simple and loss-free, and is higher in practicability by compared with high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; and compared with a conventional method, the calculation result is more accurate.
Owner:SOUTHWEST PETROLEUM UNIV

Method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in non-uniform magnetic field

The invention discloses a method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in a non-uniform magnetic field, and relates to a nuclear magnetic resonance spectrometer. The method comprises the steps that a piece of one-dimensional spectroscopy is sampled through a general one-dimensional pulse sequence, the line width of a spectral line is obtained, the basis is provided for spectral width parameter setting, and the line width reflects the magnetic field environment uniformity condition; (2) an intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence which is compiled in advance is led to the nuclear magnetic resonance spectrometer; (3) an intermolecular single-quantum coherent signal selection module, an indirect dimension evolution period t1 module, an indirect dimension evolution period t2 module and a signal sampling period t3 module of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are opened, and experiment parameters of the modules of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are set; (4) the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence with the experiment parameters set in the step (3) is executed, and data sampling is carried out; (5) after data sampling is accomplished, related data post-processing is carried out to obtain the high-resolution two-dimensional J-resolved spectroscopy free from influence of the non-uniform magnetic field.
Owner:XIAMEN UNIV

System and method for measuring unfrozen water content in frozen soil by pulse nuclear magnetic resonance (NMR)

The invention relates to a system and a method for measuring unfrozen water content in frozen soil by pulse NMR, aiming at the problems that, in the measurement of unfrozen water content, measuring procedures are complex, operators need relatively high electromagnetism theoretical basis, and operations are difficult; a plurality of test pieces are needed under multi-temperature and multi-pressure working conditions, and the test pieces are exposed in normal temperature to influence measurement precision. The system is characterized in that a soil testing tube is disposed in a ceramic tube; a temperature signal input end of a temperature sensor is disposed in the soil testing tube; a temperature signal output end of the temperature sensor is connected to the temperature signal input end of a temperature control valve. The method is characterized in that different relaxation time of solid water, combined water and free water in attenuation process are stipulated when free attenuation signals of magnetization intensity are fitted, so that the magnetic field intensity value corresponding to the free attenuation signals of magnetization intensity during the relaxation time can be obtained. The system and method of the present invention measure the unfrozen water content in frozen soil.
Owner:HARBIN INST OF TECH

Method for measuring coal sample methane adsorbing capacity through low-field nuclear magnetic resonance

The invention discloses a method for measuring coal sample methane adsorbing capacity through low-field nuclear magnetic resonance. According to the method, selected measuring parameters are used for carrying out low-field nuclear magnetic resonance measurement on powder coal samples after methane adsorption balance under set pressure, the nuclear magnetism T2 spectrum of methane in the coal samples is obtained, then signal amplitude integrals of the first spectrum peak (in the range of 0.1-4ms spectrum) on the left of the T2 spectrum are substituted to a hydrogen content index reticle equation of methane under the standard condition built through an experiment, the standard condition size of methane adsorbed by the coal samples is obtained, and therefore the methane adsorbing capacity of unit mass of coal under the set pressure is obtained. According to the method, the scale relation of methane mass and nuclear magnetic resonance 1H nuclear signals is built, the quantitative assay of methane adsorbing capacity under the same temperature and different pressures is achieved, and the novel method can be used for measuring coal methane absorbing capacity in a real-time, home-position and dynamic mode.
Owner:CHINA UNIV OF GEOSCIENCES (BEIJING)

Method for obtaining nuclear magnetic resonance two-dimension spin echo related spectrum under uneven magnetic field

ActiveCN103744042AOvercoming the influence of uneven magnetic fieldMagnetic measurementsLine widthPulse sequence
A method for obtaining a nuclear magnetic resonance two-dimension spin echo related spectrum under an uneven magnetic field relates to a nuclear magnetic resonance wave spectrum detection method and comprises the steps of using a normal one-dimension pulse sequence to sample a one-dimension spectrum, obtaining the line width of spectral lines, and providing a basis for spectrum width parameter setting, wherein the line width value also reflects the uniformity condition of a magnetic field; introducing well precompiled two-dimension spin echo related spectrum pulse sequences onto a nuclear magnetic resonance spectrometer; opening a multi-quantum coherent signal selection module, a three-dimension sampled indirect dimension evolution period t1 combination and indirect dimension evolution period t2 combination and an echo delay module among the two-dimension spin echo related spectrum pulse sequences; setting each experiment parameter of the two-dimension spin echo related spectrum pulse sequences; executing the two-dimension spin echo related spectrum pulse sequences, of which the experiment parameters are set, for data sampling; after the data sampling is finished, performing related data postprocessing to obtain the two-dimension spin echo related spectrum uninfluenced by the uneven magnetic field. The method has no need of shimming operation and is simple, convenient and effective.
Owner:XIAMEN UNIV

Method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance)

The invention relates to a method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance). The method comprises steps as follows: deionized water and crude oil are taken as standard samples to perform low-field NMR measurement, and calibration curves of water and oil are established; a to-be-measured sample which is uniformly stirred is divided into two parts and put in containers respectively, a reagent capable of realizing signal partition of oil and water is added to one part, and the mixture is uniformly stirred to form a sample a; the other part keeps unchanged and is taken as a sample b; the two samples are subjected to low-field NMR measurement to obtain an echo attenuation curve, and transverse relaxation time T2 curves of the two samples are obtained through inversion with a joint iterative correction algorithm; the transverse relaxation time T2 curves of the two samples are subjected to area integration and calculation to obtain integral areas of a water peak and an oil peak, and the calibration curves of water and oil are substituted to calculate water content and oil content of the to-be-measured sample b. The method can be suitable for measurement of content of water and oil in various kinds of oily sludge, and the measurement result is high in accuracy and good in repeatability and consumes short time.
Owner:UNIV OF SHANGHAI FOR SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products