Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4712results about "Water resource assessment" patented technology

Gps-based underwater cable positioning system

A GPS-based underwater cable positioning system for use in determining the shape and position of hydrophone streamers towed underwater behind survey vessels involved in marine seismic prospecting. The system includes a plurality of surface units towed behind the vessel. Each surface unit includes a GPS receiver to receive radio frequency GPS signals and to determine its positions. Each surface unit also has an acoustic transmitter to transmit an acoustic message signal representing its position and an optional time stamp into the water. Acoustic receiver units, attached spaced apart locations along one or more streamer cables, each include an acoustic receiver to receive the acoustic message signals from the surface units and to determine its position from the message signals. To augment the message signals from the surface units at locations distant from the surface units, acoustic transceiver units may be used. The acoustic transceiver units are attached to the streamer cables at ranges between the surface units and distant acoustic receiver units. The acoustic transceiver units each include an acoustic receiver that performs as the receivers in the acoustic receiver units and an acoustic transmitter to transmit acoustic message signals representing its position and an optional time stamp into the water to be received by the acoustic receiver units. In this way, the positions and shapes of towed streamer cables can be determined.
Owner:INPUT OUTPUT INC

Carbon dioxide oil-displacing nmr imaging detection device

A carbon dioxide drive nuclear magnetic resonance imaging detection device belongs to the technical field of petroleum engineering and technology. The detection device comprises: a simulation core device which is arranged in a nuclear magnetic resonance imaging device; an injection system which sequentially injects formation water, crude oil and supercritical carbon oxide into the simulation core device; a measurement and control system which is employed to control pressure and temperature of the whole system; the nuclear magnetic resonance imaging device which is employed to detect and perform quantitative analysis on an image to be tested to obtain voidage and permeability of a porous medium, and saturation seepage parameters of the supercritical carbon oxide, the formation water and the crude oil; and an output measuring system which is employed to measure volumes of the carbon dioxide gas, the formation water and the crude oil. The detection device has a design pressure of 0-40MPa and design temperature of 0-180 DEG C, and can simulate experimental studies of different displacement schemes of the supercritical CO2 under a complex petroleum reservoir condition; the simulation core device is made of a brass material, which produces no magnetism, satisfies requirements for high pressure and strength, has a compact structure, can be recycled, is conveniently operated, simple and applicable in an experimentation.
Owner:DALIAN UNIV OF TECH

Nuclear magnetic resonance ground water detection system with reference coils and detection method

The invention relates to a nuclear magnetic resonance ground water detection system with reference coils and a detection method. All-waveform data of nuclear magnetic resonance signals in a transmitting/receiving coil and noise signals in the reference coils are synchronously acquired through a plurality of paths of A/D acquiring units; the distribution of optimal positions and quantity of the reference coils is realized through calculating the maximum correlation of the noise signals and the nuclear magnetic resonance signals, which are acquired by the reference coils; and under the condition of unknown signal and noise statistical properties, noise in the nuclear magnetic resonance signals obtained by the transmitting/receiving coil is maximally offset by adopting a variable step adaptive algorithm, the nuclear magnetic resonance signals are extracted under the interference of multi-field source complex strong noise, thus the problems of multiple interferences of nuclear magnetic resonance detection near villages and in neighboring regions of cities and difficulty of separating multiple kinds of interference noise data are effectively solved, the interference resistance of instruments is improved, and a reliable detection device and method are provided for searching underground water near villages and in neighboring regions of cities.
Owner:JILIN UNIV

Estimating petrophysical parameters and invasion profile using joint induction and pressure data inversion approach

Methods and related systems are described relating to an inversion approach for interpreting the geophysical electromagnetic data. The inversion can be constrained by using a multiphase fluid flow simulator (incorporating pressure data if available) which simulates the fluid flow process and calculates the spatial distribution of the water saturation and the salt concentration, which are in turn transformed into the formation conductivity using a resistivity-saturation formula. In this way, the inverted invasion profile is consistent with the fluid flow physics and moreover accounts for gravity segregation effects. Jointly with the pressure data, the inversion estimates a parametric one-dimensional distribution of permeability and porosity. The fluid flow volume is directly inverted from the fluid-flow-constrained inversion of the electromagnetic data. The approach is not limited by the traditional interpretation of the formation test, which is based on a single-phase model without taking into account invasion or assuming that the fluid, for example mud-filtrate, has been cleaned up from the formation testing zone. The joint inversion of the electromagnetic and pressure data provides for a more reliable interpretation of formation permeability. One advantage of the approaches described herein, is its possible generalization to three-dimensional geometries, for example dipping beds and highly deviated wells.
Owner:SCHLUMBERGER TECH CORP

Inner river ship automatic identification system of multiple vision sensor information fusion

An automatic identification system, which is integrated by the information of a multi-visual sensor and is used on inland river ships, comprises a large-scale monitoring visual sensor which can be used on monitor fairways, an express-ball visual sensor which can be used for shooting close-up images of ship bodies and name plates of ships, and a microprocessor which can be used for tracing target ships, identifying images and summarizing traffic situations of inland rivers; the large-scale monitoring visual sensor can realize multi-target tracing for ships on fairways; when a ship enters the monitoring area, the system automatically produces an event and an ID of the ship to control the rotating and focusing of the express-ball visual sensor; the express-ball visual sensor focuses on the traced vessel to shoot; the height of the vessel body which is above water and the load can be estimated by detecting of the outline of the close-up image; and at the same time, by positioning the ship cockpit, the number of the name plate can be shot and identified; by integrating multi-visual sensors and automatically collecting the basic data of inland river traffic by a computer, the present invention can effectively manage inland rivers.
Owner:ZHEJIANG UNIV OF TECH

Unmanned ship water surface target detection, identification and positioning method based on monocular camera and lidar information fusion

The invention belongs to the field of intelligent unmanned intelligent ships, and relates to an unmanned ship water surface target detection, identification and positioning method based on monocular camera and lidar information fusion. The detection, identification and positioning of a water surface target by an unmanned ship are influenced by distances and the fluctuation of the target, so that alidar and a monocular camera are integrated to accurately detect, identify and position the target within a sensing range. According to the method, acquired water surface target images are adopted totrain a neural network-based target detection and recognition model; the lidar employs a conditional removal filter and Euclidean clustering to obtain the position of the water surface target in a world coordinate system; and finally, a camera image information and lidar information fusion method is designed, and therefore, the method is highly robust to uncertain factors. With the method adopted, the unmanned ship is capable of accurately detecting, identifying and positioning the water surface target; and good environment perception can be realized for the target tracking, path planning andautonomous navigation of the unmanned ship. The method has a broad application prospect.
Owner:HARBIN ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products