Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

627 results about "Magnetic source" patented technology

Apparatus and method for processing magnetic particles

An apparatus and method for carrying out the affinity separation of a target substance from a liquid test medium by mixing magnetic particles having surface immobilized ligand or receptor within the test medium to promote an affinity binding reaction between the ligand and the target substance. The test medium with the magnetic particles in a suitable container is removably mounted in an apparatus that creates a magnetic field gradient in the test medium. This magnetic gradient is used to induce the magnetic particles to move, thereby effecting mixing. The mixing is achieved either by movement of a magnet relative to a stationary container or movement of the container relative to a stationary magnet. In either case, the magnetic particles experience a continuous angular position change with the magnet. Concurrently with the relative angular movement between the magnet and the magnetic particles, the magnet is also moved along the length of the container causing the magnetic field gradient to sweep the entire length of the container. After the desired time, sufficient for the affinity reaction to occur, movement of the magnetic gradient is ended, whereby the magnetic particles are immobilized on the inside wall of the container nearest to the magnetic source. The remaining test medium is removed while the magnetic particles are retained on the wall of the container. The test medium or the particles may then be subjected to further processing.
Owner:SIGRIS RES

Underwater carrier geomagnetic anomaly feature points matching navigation method

An underwater carrier geomagnetic anomaly feature points matching navigation method belongs to the technical field of underwater navigation and solves the problem in the prior art that the location of an underwater carrier can not be determined according to geomagnetic field information. The method provided by the invention comprises the following steps of: acquiring a target magnetic moment vector of present position of the underwater carrier and a relative position vector from the present position of the underwater carrier to a target magnetic source; constructing a map of the underwater target magnetic source; carrying out coordinate transformation based on the absolute position of the underwater carrier so as to obtain geographic coordinates of the map; calculating the position of the underwater carrier in the map at sampling time and the geographic coordinates of the underwater carrier at the sampling time; updating the position of the target magnetic source; updating the map of the underwater target magnetic source; and repeating the above relative processes to complete the matching navigation of the underwater carrier. The invention is suitable for underwater carrier navigation.
Owner:NORTHEAST FORESTRY UNIVERSITY

Apparatus for processing magnetic particles

An apparatus and method for carrying out the affinity separation of a target substance from a liquid test medium by mixing magnetic particles having surface immobilized ligand or receptor within the test medium to promote an affinity binding reaction between the ligand and the target substance. The test medium with the magnetic particles in a suitable container is removably mounted in an apparatus that creates a magnetic field gradient in the test medium. This magnetic gradient is used to induce the magnetic particles to move, thereby effecting mixing. The mixing is achieved either by movement of a magnet relative to a stationary container or movement of the container relative to a stationary magnet. In either case, the magnetic particles experience a continuous angular position change with the magnet. Concurrently with the relative angular movement between the magnet and the magnetic particles, the magnet is also moved along the length of the container causing the magnetic field gradient to sweep the entire length of the container. After the desired time, sufficient for the affinity reaction to occur, movement of the magnetic gradient is ended, whereby the magnetic particles are immobilized on the inside wall of the container nearest to the magnetic source. The remaining test medium is removed while the magnetic particles are retained on the wall of the container. The test medium or the particles may then be subjected to further processing.
Owner:SIGRIS RES

Self-compensating magnetoelastic torque sensor system

An improved magnetic torque transducer arrangement for self-compensating effects of external magnetic sources and temperature offset comprises a shaft with at least one magnetized zone, at least one active magnetic field sensor and at least one passive magnetic field sensor disposed in such a way that active field sensor always in a position with higher magnetic field strength arise from applied torque than that of passive sensor. Passive field sensors may also be placed in both sides of the active field sensor, or on one side of active field sensor only. The transducer output is obtained by subtract the output of passive field sensors from that of active field sensor thus cancel out the effect of interfering magnetic field flux and temperature offset on the torque transducer, and partially filter out temperature sensitivity drift and rotational dependant signal. The sensitivity of active and passive field sensors can also be electrically matched by calibrating them in a uniform magnetic field, thus a completely common mode rejection can be achieved. The sensor arrangements may also be utilized in other type of sensors that extract changes in magnetic fields to indirectly detect direction, speed, presence, force, linear position, or angle to cancel out interfering magnetic field and temperature offset effect.
Owner:WENG WENSHENG

Method for obtaining radar cross section (RCS) of homogeneous bi-isotropic medium object

InactiveCN102508220AUniform Scattering Cross SectionScattered field stabilizationWave based measurement systemsMagnetic sourceRao wilton glisson
The invention relates to the field of electromagnetic wave and radar monitoring and provides a method for obtaining radar cross section (RCS) of a homogeneous bi-isotropic medium object. The method comprises the following steps of: building a geometrical model of the homogeneous bi-isotropic medium object and dividing the surface of the model into a plurality of triangular patches in seamless connection; introducing a planar power source vector function and a planar magnetic source vector function; applying a field decomposition method in the homogeneous bi-isotropic medium object; obtaining a boundary integral equation on the surface of a scatterer according to the boundary conditions; applying a moment method to carry out numerical solution on the boundary integral equation, including space test and time test; adopting RWG (Rao-Wilton-Glisson) basis functions as the spatial basis function and test function and adopting Laguerre functions with amplitude factors as the temporal basis function and test function; and obtaining electromagnetic scattering of an observation point according to the equivalence principle and then applying Fourier transform to obtain the RCS. The method has the following advantages that: the obtained scattered field of the homogeneous bi-isotropic medium object is stable; and the RCS with wide frequency range can be obtained.
Owner:郑州微纳科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products