Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

228results about "Magnetostrictive property measurements" patented technology

Apparatus and method utilizing magnetic field

Apparatus and method for harvesting energy from the environment and / or other external sources and converting it to useful electrical energy. The harvester does not contain a permanent magnet or other local field source but instead relies on the earth's magnetic field of another source of a magnetic field that is external to the sensing device. One advantage of these new harvesters is that they can be made smaller and lighter than energy harvesters that contain a magnet and / or an inertial mass. A small implantable stimulator(s) includes at least one passive magnetostrictive / electro-active (PME) magnetic-field sensor for delivering electrical stimulation to surrounding tissue. The PME is charged utilizing a changing magnetic field from an external alternating magnetic field source at a frequency particular to the PME. The small stimulator provides means of stimulating a nerve, tissue or internal organ with direct electrical current, such as relatively low-level direct current for temporary or as needed therapy. The field source may be a hand-held device or a small antenna affixed to the wearer's skin, clothing or accessories. The stimulator may be configured to be small enough to be implanted through a surgical needle. Open- and closed-loop systems are disclosed with measurement of current flow and therapy through PME sensor function.
Owner:FERRO SOLUTIONS

Magnetic field sensor circuit

A magnetic field sensor circuit comprises a first magneto-resistive sensor (Rx) which senses a first magnetic field component in a first direction to supply a first sense signal (Vx). A first flipping coil (FC1) applies a first flipping magnetic field with a periodically changing polarity to the first magneto-resistive sensor (Rx) to cause the first sense signal (Vx) to have alternating different levels synchronized with the first flipping magnetic field. A second magneto -resistive sensor (Ry) senses a second magnetic field component in a second direction different than the first direction to supply a second sense signal (Vy). A second flipping coil (FC2) applies a second flipping magnetic field with a periodically changing polarity to the second magneto -resistive sensor (Ry) to cause the second sense signal (Vy) to have an alternating different levels synchronized with the second flipping magnetic field. The first flipping magnetic field and the second flipping magnetic field have a phase shift. A differential amplifier (AMP1) receives the first sense signal (Vx) and the second sense signal (Vy) to obtain a difference signal (Vd). A first synchronous demodulator (DEM1) receives the difference signal (Vd) and a first switching signal (Q1) being phase locked to the alternating different levels of the first sense signal (Vx) to supply a first output signal (Vox) indicating the first magnetic field component. A second synchronous demodulator (DEM2) receives the difference signal (Vd) and a second switching signal (Q2) being phase locked to the alternating different levels of the second sense signal (Vy) to supply a second output signal (Voy) indicating the second magnetic field component.
Owner:TITAN INTELLIGENCE TECH LTD

Self-compensating magnetoelastic torque sensor system

An improved magnetic torque transducer arrangement for self-compensating effects of external magnetic sources and temperature offset comprises a shaft with at least one magnetized zone, at least one active magnetic field sensor and at least one passive magnetic field sensor disposed in such a way that active field sensor always in a position with higher magnetic field strength arise from applied torque than that of passive sensor. Passive field sensors may also be placed in both sides of the active field sensor, or on one side of active field sensor only. The transducer output is obtained by subtract the output of passive field sensors from that of active field sensor thus cancel out the effect of interfering magnetic field flux and temperature offset on the torque transducer, and partially filter out temperature sensitivity drift and rotational dependant signal. The sensitivity of active and passive field sensors can also be electrically matched by calibrating them in a uniform magnetic field, thus a completely common mode rejection can be achieved. The sensor arrangements may also be utilized in other type of sensors that extract changes in magnetic fields to indirectly detect direction, speed, presence, force, linear position, or angle to cancel out interfering magnetic field and temperature offset effect.
Owner:WENG WENSHENG

Robust detection of strain with temperature correction

An apparatus (10) is set forth for measuring a return signal of a magnetostrictive sensor (20) that detects a force, torque, or pressure. The return signal includes noise, a DC resistance (44), an AC resistance and an inductance and the inductance is shifted ninety degrees from the AC resistance. The apparatus (10) includes a sensor filter (22) to remove the noise from the return signal. A sensor filter (22) shifts the return signal and more specifically, the inductance by an additional angle and the sum of the additional angle and the ninety degrees phase shift is defined as the final detection angle. To detect the inductance at the final detection angle, a wave filter (16) and a reference filter (28) shifts a reference signal by the final detection angle to trigger a first demodulator (26) to detect the inductance at the final detection angle. The inductance detected by the first demodulator (26) varies due to temperature. To remove the temperature from the measured inductance, the apparatus includes a DC detection circuit (42) to detect the DC resistance which is proportional to the temperature across the sensor (20). The DC resistance and the measure inductance are inserted into a correction equation to produce a corrected inductance which is independent of temperature. Instead of inductance, an AC resistance may be used in the equation.
Owner:BWI CO LTD SA

Magnetic field sensor circuit

A magnetic field sensor circuit comprises a first magneto-resistive sensor (Rx) which senses a first magnetic field component in a first direction to supply a first sense signal (Vx). A first flipping coil (FC1) applies a first flipping magnetic field with a periodically changing polarity to the first magneto-resistive sensor (Rx) to cause the first sense signal (Vx) to have alternating different levels synchronized with the first flipping magnetic field. A second magneto -resistive sensor (Ry) senses a second magnetic field component in a second direction different than the first direction to supply a second sense signal (Vy). A second flipping coil (FC2) applies a second flipping magnetic field with a periodically changing polarity to the second magneto -resistive sensor (Ry) to cause the second sense signal (Vy) to have an alternating different levels synchronized with the second flipping magnetic field. The first flipping magnetic field and the second flipping magnetic field have a phase shift. A differential amplifier (AMP1) receives the first sense signal (Vx) and the second sense signal (Vy) to obtain a difference signal (Vd). A first synchronous demodulator (DEM1) receives the difference signal (Vd) and a first switching signal (Q1) being phase locked to the alternating different levels of the first sense signal (Vx) to supply a first output signal (Vox) indicating the first magnetic field component. A second synchronous demodulator (DEM2) receives the difference signal (Vd) and a second switching signal (Q2) being phase locked to the alternating different levels of the second sense signal (Vy) to supply a second output signal (Voy) indicating the second magnetic field component.
Owner:TITAN INTELLIGENCE TECH LTD

Robust detection of strain with temperature correction

An apparatus (10) is set forth for measuring a return signal of a magnetostrictive sensor (20) that detects a force, torque, or pressure. The return signal includes noise, a DC resistance (44), an AC resistance and an inductance and the inductance is shifted ninety degrees from the AC resistance. The apparatus (10) includes a sensor filter (22) to remove the noise from the return signal. A sensor filter (22) shifts the return signal and more specifically, the inductance by an additional angle and the sum of the additional angle and the ninety degrees phase shift is defined as the final detection angle. To detect the inductance at the final detection angle, a wave filter (16) and a reference filter (28) shifts a reference signal by the final detection angle to trigger a first demodulator (26) to detect the inductance at the final detection angle. The inductance detected by the first demodulator (26) varies due to temperature. To remove the temperature from the measured inductance, the apparatus includes a DC detection circuit (42) to detect the DC resistance which is proportional to the temperature across the sensor (20). The DC resistance and the measure inductance are inserted into a correction equation to produce a corrected inductance which is independent of temperature. Instead of inductance, an AC resistance may be used in the equation.
Owner:BWI

Method of diagnosing fatigue life of structural steelwork and a member of steelwork having life diagnostic function

In a method of diagnosing the fatigue life of structural steelwork according to the present invention, a Barkhausen noise measurement is performed under the condition of 5 mu m< / =d< / =1 mm where d is the detection depth of Barkhausen noise, by using a magnetic head constituted by an air-core coil detection head and a magnetic excitation head obtained by winding a copper wire such as an enameled wire on a U-shaped core made of a soft magnetic material such as a silicon steel sheet or an amorphous magnetic material. The degree of fatigue damage of a target measurement portion is diagnosed using the root-mean-square (RMS) voltage or voltage amplitude value of the Barkhausen noise. According to this method, the degree of fatigue and degradation by stress and strain in the structural steelwork can be accurately diagnosed prior to development of cracking without any limitation on diagnostic locations. A member of steelwork having a life diagnostic function is obtained by mounting the above magnetic head on a brace- or wall-like vibration-damping device made of very low-yield steel. According to this member of steelwork, the wall or covering material of a bridge or the like need not be removed even in practicing a fatigue life diagnosis. The degree of fatigue degradation in structural steelwork can be easily and accurately diagnosed prior to development of cracking even in a location where an operator cannot access due to the structural limitation.
Owner:NIPPON STEEL CORP

Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers

Methods and devices for inspecting waterwall tubes for the detection of fire side damage over a long length of the tube are described. The system of the invention uses a magnetostrictive strip and a flat coil-type plate magnetostrictive sensor (MsS) that are held in place on the waterwall using a specially designed frame and an electromagnetic circuit. The magnetostrictive strip and plate type MsS are positioned against a tube in the waterwall using an elastomeric pad or a fluid filled bladder to achieve close contact and good mechanical coupling between the magnetostrictive strip and the tube surface. When current activated, the electromagnet holds the entire assembly in place and provides a DC bias magnetic field required for plate magnetostrictive sensor probe operation. Long-range guided-waves are pulsed into the tube and reflected signals are detected within the same sensor structure. The received signal data representative of a long section of the tube under investigation is then analyzed for the presence of anomalies and defects. When data acquisition for a particular tube or tube section is completed the electromagnet is turned off and the entire device is moved to the next tube in the waterwall.
Owner:SOUTHWEST RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products