Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6798 results about "Seabed" patented technology

The seabed (also known as the seafloor, sea floor, or ocean floor) is the bottom of the ocean.

Underwater ducted turbine

An apparatus is disclosed for a turbine for generating electrical power from water or air flow comprising at least one rotor disk having a plurality of hydrofoil blades, a guide vanes, a cylindrical housing, and a generator means. A rim generator comprising a magnet race rotor rim and fixed stator coils in the housing is used. The apparatus is fitted with a screen to stop the ingress of debris and marine life, and a skirt augmenter device to reduce the Betz effect. The apparatus is preferably for sub-sea deployment and driven by tidal currents, but may be powered by river current or wave driven air or by wind. The apparatus may be deployed on at least one telescoping pole, tethered to the sea-bed and kept buoyant by buoyant concrete in the housing, inserted in a dam, under a barge or in a tidal power array.
Owner:CLEAN CURRENT PARTNERSHIP

Apparatus, systems and methods for seabed data acquisition

Seabed sensor units, systems including same, and methods for acquiring seabed data are described, one seabed sensor unit comprising a base, the base containing at least one sensor able to detect a seismic signal, electronics comprising a clock and one or more electronic components enabling the sensor to communicate seismic data to one or more memory modules, and a local autonomous power source. This abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:WESTERNGECO LLC

Method and apparatus for deployment of ocean bottom seismometers

ActiveUS20060159524A1Effective movementEasy to deploySeismic signal receiversBuoysOcean bottom seismometerOrbit
A method and apparatus for deployment and retrieval of ocean bottom seismic receivers. In one embodiment, the apparatus comprises a carrier containing a plurality of receivers attached to a remotely operated vehicle (ROV). The carrier comprises a frame in which is mounted a structure for seating and releasing said receivers. The structure may comprise a movable carousel or a movable conveyor or fixed parallel rails or a barrel. In the case of the barrel, the receivers are axially stacked therein. The structure is disposed to deliver said receivers to a discharge port on said frame, where the receivers are removable from said carrier. The apparatus includes a discharge mechanism for removing said receivers from said carrier. In another embodiment, the method comprises the steps of loading a carrier with a plurality of receivers, attaching said carrier to an ROV, utilizing said ROV to transport the carrier from a surface vessel to a position adjacent the seabed and thereafter utilizing said ROV to remove receivers from said carrier and place the receivers on the seabed. In yet another embodiment, an ROV adjacent the seabed engages a deployment line extending from the vessel. The deployment line is used to guide receivers attached thereto down to the ROV for “on-time” delivery and placement on the seabed.
Owner:MAGSEIS FF LLC

Hydro turbine generator

InactiveUS20050285407A1Minimize downstream efficiency lossMinimizing swirl lossEngine fuctionsWorking fluid for enginesStator coilEngineering
An apparatus is disclosed for a turbine for generating electrical power from water or air flow comprising at least one rotor disk having a plurality of hydrofoil blades, a guide vanes, a cylindrical housing, and a generator means. A rim generator comprising a magnet race rotor rim and fixed stator coils in the housing is used. The apparatus is fitted with a screen to stop the ingress of debris and marine life, and a skirt augmenter device to reduce the Betz effect. The apparatus is preferably for sub-sea deployment and driven by tidal currents, but may be powered by river current or wave driven air or by wind. The apparatus may be deployed on at least one telescoping pole, tethered to the sea-bed and kept buoyant by buoyant concrete in the housing, inserted in a dam, under a barge or in a tidal power array.
Owner:CLEAN CURRENT PARTNERSHIP

Wave energy conversion device for desalination, ETC

An impulse-type “wave motor” employs a seabed-mounted or supported structure mounting a wave energy absorbing panel on a hinged lever arm for reciprocation motion to obtain optimal absorption of wave energy from wave motion in the sea. For deepwater wavelengths of L, the panel is optimally positioned in a region within L / 2 depth from the sea surface. The panel motion is coupled by a connecting rod to a fluid pump which generates a high-pressure fluid output that may be used to drive a reverse osmosis desalination unit or to produce other useful work. Seawater or brackish water may be desalinated through reverse osmosis membranes to produce water quality for consumption, agricultural, or other uses. The submerged operating environment of the device in a region of one-half the design wavelength provides the maximum available energy flux and forced oscillations. The pump may be of the positive-displacement piston type, plunger type, or multi-staging driver type, or a variable volume pump.
Owner:KOBASHIKAWA ALVIN +1

Coding and Decoding: Seismic Data Modeling, Acquisition and Processing

A method for coding and decoding seismic data acquired, based on the concept of multishooting, is disclosed. In this concept, waves generated simultaneously from several locations at the surface of the earth, near the sea surface, at the sea floor, or inside a borehole propagate in the subsurface before being recorded at sensor locations as mixtures of various signals. The coding and decoding method for seismic data described here works with both instantaneous mixtures and convolutive mixtures. Furthermore, the mixtures can be underdetemined [i.e., the number of mixtures (K) is smaller than the number of seismic sources (I) associated with a multishot] or determined [i.e., the number of mixtures is equal to or greater than the number of sources). When mixtures are determined, we can reorganize our seismic data as zero-mean random variables and use the independent component analysis (ICA) or, alternatively, the principal component analysis (PCA) to decode. We can also alternatively take advantage of the sparsity of seismic data in our decoding process. When mixtures are underdetermined and the number of mixtures is at least two, we utilize higher-order statistics to overcome the underdeterminacy. Alternatively, we can use the constraint that seismic data are sparse to overcome the underdeterminacy. When mixtures are underdetermined and limited to single mixtures, we use a priori knowledge about seismic acquisition to computationally generate additional mixtures from the actual recorded mixtures. Then we organize our data as zero-mean random variables and use ICA or PCA to decode the data. The a priori knowledge includes source encoding, seismic acquisition geometries, and reference data collected for the purpose of aiding the decoding processing.The coding and decoding processes described can be used to acquire and process real seismic data in the field or in laboratories, and to model and process synthetic data.
Owner:IKELLE LUC T

High pressure system

An arrangement and method for integrating a high pressure riser sleeve from the upper end of a high pressure drilling and workover riser terminated by an upper BOP close to sea level in one end and by a sub-sea blowout preventer BOP or a low riser package LRP close to the seabed in the lower end. The high pressure riser sleeve being installed, connected and integrated to the high pressure drilling and workover riser and extending up to and above the drill floor, inside a low pressure drilling riser slip joint which is connected to the drilling and workover riser. This relates to offshore drilling and well activities preformed from a floating drilling or workover rig or vessel. Operations can be switched from drilling with jointed drillpipe in a conventional manner, into performing underbalanced wireline and / or coiled tubing activities with full well pressure, much more effectively than with prior art.
Owner:ENHANCED DRILLING

Wave energy conversion device for desalination, ETC

An impulse-type "wave motor" employs a seabed-mounted or supported structure mounting a wave energy absorbing panel on a hinged lever arm for reciprocation motion to obtain optimal absorption of wave energy from wave motion in the sea. For deepwater wavelengths of L, the panel is optimally positioned in a region within L / 2 depth from the sea surface. The panel motion is coupled by a connecting rod to a fluid pump which generates a high-pressure fluid output that may be used to drive a reverse osmosis desalination unit or to produce other useful work. Seawater or brackish water may be desalinated through reverse osmosis membranes to produce water quality for consumption, agricultural, or other uses. The submerged operating environment of the device in a region of one-half the design wavelength provides the maximum available energy flux and forced oscillations. The pump may be of the positive-displacement piston type, plunger type, or multi-staging driver type, or a variable volume pump.
Owner:KOBASHIKAWA ALVIN +1

Exploitation Of Sea Floor Rig Structures To Enhance Measurement While Drilling Telemetry Data

A method for communicating data in an offshore data communication system comprises measuring L / MWD data with a sensor disposed in a bottomhole assembly positioned in a subsea borehole. The bottomhole assembly is disposed along a drillstring extending through the subsea borehole. In addition, the method comprises communicating the L / MWD data from the bottomhole assembly to the seafloor with a telemetry signal. Further, the method comprises receiving the telemetry signal with at least one telemetry transducer positioned proximal the sea floor. Still further, the method comprises processing the telemetry signal at the seafloor to produce a processed signal. Moreover, the method comprises transmitting the processed signal from the sea floor to the sea surface.
Owner:HALLIBURTON ENERGY SERVICES INC

Geophysical method and apparatus

A method and apparatus is disclosed for performing a seismic survey below the surface of a body of water and on the seabed. In one embodiment, a plurality of seismic data receivers are removably loaded in a carrier located above the surface of the water and the carrier is lowered into the water and placed at a depth relatively close to the seabed. Each of the receivers has a memory for recording the vibrations of the seabed and has a switch for activating the memory. A ROV is used to unload the receivers from the carrier and to deposit each receiver on the seabed and along a survey line. In one embodiment, the receivers comprise a frame, a pressure vessel for housing the memory and remotely activated controls, and a geophone that is separately planted into the seabed at a relatively short distance from the frame.
Owner:BP CORP NORTH AMERICA INC

System and method for treating drilling mud in oil and gas well drilling applications

A system and method for controlling drilling mud density at a location either at the seabed (or just above the seabed) or alternatively below the seabed of wells in deep water and ultra deep water applications. A base fluid of lesser density than the drilling mud required at the wellhead is used to produce a diluted mud in the riser. By combining the appropriate quantities of drilling mud with base fluid, a diluted riser mud density at or near the density of seawater may be achieved. The present invention also includes a wellhead injection device for injecting the base fluid into the rising drilling mud. The riser charging lines are used to carry the low density base fluid to the injection device for injection into the return mud. At the surface, the diluted return mud is passed through a treatment system to cleanse the mud of drill cuttings and to separate the heavier drilling mud from the lighter base fluid. The present invention further includes a control unit for manipulating drilling fluid systems and displaying drilling and drilling fluid data.
Owner:DUAL GRADIENT SYST

Heaving ocean wave energy converter

An ocean wave energy device uses large gas filled and surface vented or evacuated flexible containers having rigid movable ends and rigid fixed depth ends connected by flexible bellows, suitably reinforced against external hydrostatic pressure, submerged to a depth below anticipated wave troughs. One or more containers compress and expand as waves and troughs, respectively, pass overhead driving hydraulic or pneumatic, pumping means producing pressurized fluid flow for a common sea bed motor-generator or for other uses or on-board direct drive generators. Mechanical, hydraulic or pneumatic means re-expand said containers when a wave trough is overhead. Power output is augmented by mechanically connecting said rigid moving surfaces to surface floats, which may also provide said surface vent such that as waves lift and troughs lower said floats, said containers are further compressed and re-expanded, respectively. Depth fixing and adjustment means for tides and sea-states are provided.
Owner:ROHRER TECH

Self-supported riser system and method of installing same

InactiveUS20070044972A1Save rig timeReducing maneuvering stepCargo handling apparatusDrilling rodsBuoyPetroleum oil
A self-supported riser system (100) for an Anticipated Production System (ASP) Test or a Long Duration Production (LDP) Test in a subsea petroleum production system, utilizing an ANM coupled to a wellhead and Floating Production Unit (FPU) is disclosed. The system includes a wellhead at the seabed, connected to an ANM (20) provided with a preventor (BOP of workover) (30). The preventor (30) is connected to a production riser (50) through a connection tool (40). The riser (50), mounted internally within a buoy assembly (60), is maintained under traction with the aid of a buoy assembly. The upper end of the riser (50) is provided with a Subsea Intervention Terminal (700), the Terminal being interlinked to the FPU by a flexible jumper (90) to carry the oil produced to the FPU. Two methods for installing the self-supported riser system (100) are also disclosed.
Owner:PETROLEO BRASILEIRO SA (PETROBRAS)

Apparatus and method for providing a controllable supply of fluid to subsea well equipment

An apparatus and method for providing a controllable supply of fluid, and optionally power and / or communication signals, to a subsea equipment are provided. The fluid may be a water-based fluid, oil-based fluid, or chemicals. The apparatus includes a reservoir disposed on a seabed for storing a supply of fluid for delivery to the subsea well equipment. A subsea pumping device is configured to receive the fluid from the reservoir, pressurize the fluid, and deliver the pressurized fluid to an accumulator of a hydraulic power unit disposed on the seabed. The hydraulic power unit can store the pressurized fluid and control an output of the pressurized fluid to the subsea well equipment, thereby providing a subsea fluid source for the subsea equipment.
Owner:CHEVROU USA INC

Apparatus for deploying an underwater pipe string

An apparatus for deploying an underwater pipe string includes a mast, an articulated table, a stinger, and a pipe erector. The mast is affixed to the articulated table and extends above the articulated table. The stinger is affixed to the articulated table and depends below the articulated table. The pipe erector is connected to the mast for loading pipe joints up to the mast. A pipe joint loaded in the mast is welded to the pipe string, which depends from the articulated table and through the stinger toward a seabed. The stationary table is articulated for tilting of the table, the mast, and the stinger azimuthally and angularly for a preferred direction and lay angle of the pipe string being deployed.
Owner:OIL STATES INDS UK

Current prediction in seismic surveys

A method for use in seismic surveying includes determining the shape of a seismic cable during a seismic survey; determining the tension on the seismic cable at a plurality of points along the seismic cable; and predicting a current that will impact the seismic cable from the determined shape and the determined tension. The method may be practiced two-dimensionally in the context of a marine survey employing a towed streamer array or three-dimensionally in the context of laying an array of ocean bottom cables on the seabed. The predicted currents can, in some embodiments; be used to make steering corrections for the seismic cables.
Owner:REFLECTION MARINE NORGE AS

Drilling and producing deep water subsea wells

Subsea wells are drilled and completed with an offshore floating platform in a manner that allows simultaneous work on more than one well. A first well is drilled and cased. Then a tubing hanger is run through a drilling riser and landed in the wellhead housing. Then, with the same floating platform, the drilling riser is disconnected and moved to a second well. While performing operations on the second well, the operator lowers a production tree from the floating platform on a lift line, and connects it to the first wellhead housing. An ROV assisted subsea plug removal tool is used for plug removal and setting operations. Seabed separation is configured upstream of a production choke valve.
Owner:VETCO GRAY

Cable deployment system and method of using same

A cable deployment system and method for laying a cable on the sea floor. The cable deployment system includes a cable having a first cable section connected to a riser cable section. The riser cable section includes an armor that is connected to a drum capable of containing a required length of the first cable section. A stinger is attached to the drum and shaped to allow the first cable section to exit the drum. The cable deployment system also includes a tensioning device attached to the drum. The tensioning device is capable of maintaining a tension in the first cable section during deployment of the first cable section from the drum. The method of deploying the cable in deep water from a surface vessel includes the steps of containing the first cable section within the drum and lowering the drum from the surface vessel. An end of the first cable section is secured to the sea floor and the first cable section is deployed from the drum onto the sea floor.
Owner:SAIPEM AMERICA

System for drilling oil and gas wells by varying the density of drilling fluids to achieve near-balanced, underbalanced, or overbalanced drilling conditions

InactiveUS7090036B2Decreasing/increasing densityHigh speedConstructionsDerricks/mastsWell drillingLand based
A system for controlling drilling mud density at a location either at the seabed (or just above the seabed) or alternatively below the seabed of wells in offshore and land-based drilling applications is disclosed. The present invention combines a base fluid of lesser / greater density than the drilling fluid required at the drill bit to drill the well to produce a combination return mud in the riser. By combining the appropriate quantities of drilling mud with a light base fluid, a riser mud density at or near the density of seawater may be achieved to facilitate transporting the return mud to the surface. Alternatively, by injecting the appropriate quantities of heavy base fluid into a light return mud, the column of return mud may be sufficiently weighted to protect the wellhead. At the surface, the combination return mud is passed through a treatment system to cleanse the mud of drill cuttings and to separate the drilling fluid from the base fluid. The present invention further includes a control unit for manipulating drilling fluid systems and displaying drilling and drilling fluid data.
Owner:DUAL GRADIENT SYST

Rotational motion compensated seabed seismic sensors and methods of use in seabed seismic data acquisition

InactiveUS20060245300A1Minimize and prevent rotationalMinimize and prevent and rollingSeismic signal receiversSeismic signal processingLinear motionOcean bottom
Apparatus and methods for acquiring seismic data using a seabed seismic data cable positioned on a seabed are described, including correcting for the effect of one or more sensor non-linear motions, which improves accuracy of seismic data. One or multiple non-linear movements of the sensor may be corrected for. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:WESTERNGECO LLC

Arrangement and method for installing a subsea transformer

An arrangement and a method for use in installation procedures for subsea transformers. A central, hole or tube is included in an encapsulation enclosing a transformer that is to be installed. Three core elements of the transformer are arranged symmetrically around the hole or tube forming a triangle or a delta. The transformer is lowered towards a a foundation placed on the sea floor wherein a guide pin is mounted. When the transformer has found its way to the foundation, the guide pin will enter the tube, and the transformer will slide down onto the guide line pin. The tube is terminated by a funnel shaped opening, thus making it easier not to miss the guide pin by the tube opening. The transformer is horizontally oriented by means of orientation keys localized within the tube.
Owner:VETCO GRAY SCANDINAVIA

Offshore renewable energy source comprehensive power generating system

The invention relates to an offshore renewable energy source comprehensive power generating system, belonging to the technical field of renewable energy source power generation. The comprehensive power generating system comprises a single pile structure (1), three power generating devices and an electrical connecting circuit. The three power generating devices comprise a wind power generating device, a wave energy power generating device and a tidal energy power generating device which are respectively connected with a direct-current bus (19) in the comprehensive power generating system in parallel by three direct-drive permanent magnet generators (3-1, 3-2, 3-3) and three rectifiers (16-1, 16-2, 16-3), and connected to a reverser (21) on the bank by a seabed cable (20), and finally merged in a power grid by a boosting transformer (22). The offshore renewable energy source comprehensive power generating system can integrate the offshore wind energy power generation, wave energy power generation and tidal energy power generation to an organic combined body, and realizes the compatibility of various power generating devices and the credible connection of various power generating devices with the power grid by the electrical connecting system.
Owner:HOHAI UNIV

System for drilling oil and gas wells using a concentric drill string to deliver a dual density mud

InactiveUS7093662B2Decreasing/increasing densityHigh speedSurveyConstructionsSeawaterTreatment system
A system for controlling drilling mud density at a location either at the seabed (or just above the seabed) or alternatively below the seabed of wells in offshore and land-based drilling applications is disclosed. The present invention combines a base fluid of lesser / greater density than the drilling fluid required at the drill bit to drill the well to produce a combination return mud in the riser. By combining the appropriate quantities of drilling mud with a light fluid, a riser mud density at or near the density of seawater may be achieved to facilitate transporting the return mud to the surface. Alternatively, by injecting the appropriate quantities of heavy fluid into a light return mud, the column of return mud may be sufficiently weighted to protect the wellhead. At the surface, the combination return mud is passed through a treatment system to cleanse the mud of drill cuttings and to separate the drilling fluid from the base fluid. The present invention further includes a control unit for manipulating drilling fluid systems and displaying drilling and drilling fluid data.
Owner:DUAL GRADIENT SYST

Deployment and retrieval of seismic autonomous underwater vehicles

Apparatuses, systems, and methods for the deployment of a plurality of autonomous underwater seismic vehicles (AUVs) on or near the seabed based on acoustic communications with an underwater vehicle, such as a remotely operated vehicle. In an embodiment, the underwater vehicle is lowered from a surface vessel along with a subsea station with a plurality of AUVs. The AUVs are configured to acoustically communicate with the underwater vehicle or a second surface vessel for deployment and retrieval operations. The underwater vehicle and / or second surface vessel is configured to instruct the AUVs to leave the subsea station or underwater vehicle and to travel to their intended seabed destination. The underwater vehicle and / or second surface vessel is also configured to selectively instruct the AUVs to leave the seabed and return to a seabed location and / or a subsea station for retrieval.
Owner:SEABED GEOSOLUTIONS

Underwater pipeline connection joined to a riser

The invention relates to a bed to surface connection for an underwater pipeline (11), resting on the seabed, in particular at great depth, of the hybrid tower type, comprising a static base (151-152) resting on the bed. According to the invention said pipeline (11), resting on the seabed is connected by means of a flexible pipeline element (12) with an elbow bend, to a vertical riser (5), the bottom end of which is fixed with relation to said base.
Owner:SAIPEM SA

Infrastructure-independent deepwater oil field development concept

InactiveUS20060000615A1Maintainance for emmission reductionSolidificationOcean bottomOil field
A method for developing a sub-sea hydrocarbons field includes sub-sea wells, sub-sea oil / gas separation, storing the degassed oil in a storage tank located or the seabed, liquefying natural gas aboard a vessel using liquid nitrogen aboard the vessel to obtain liquefied natural gas, transporting the liquefied natural gas to an onshore terminal, re-gasifying the liquefied natural gas, and obtaining a new batch of liquid nitrogen using energy recovered from the re-gasifying the liquefied natural gas.
Owner:CONOCOPHILLIPS CO

Floating Apparatus for Deploying in Marine Current for Gaining Energy

A floating, semi-submerged, tethered device that supports a horizontal axis turbine and power generation equipment for extracting kinetic energy from a tidal stream or ocean current. A submerged body (1) is supported by surface piercing struts (2) of small water plane area (FIG. 6). The device is tethered to the seabed by a spread of mooring lines (12) that are deployed both into and away from the direction of the tidal current. A horizontal axis turbine (4) harnesses energy from the water flow and drives a generator housed within the body. A horizontal strut hydrofoil (24) corrects the trim of the device when subject to varying loads from the mooring system and can also be used to dampen pitch motion. Rudder flaps in the struts (25) can be used to counteract roll motion. Power is exported from the device to the seabed by an umbilical (17). A thrusters (22) can be used to constrain the rotation of the device about its mooring system to prevent excessive twist building up between the mooring lines and the power export umbilical.
Owner:OCEAN FLOW ENERGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products