Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1571 results about "Resonance signal" patented technology

Frequency encoding of resonant mass sensors

A method for the detection of analytes using resonant mass sensors or sensor arrays comprises frequency encoding each sensor element, acquiring a time-domain resonance signal from the sensor or sensor array as it is exposed to analyte, detecting change in the frequency or resonant properties of each sensor element using a Fourier transform or other spectral analysis method, and classifying, identifying, and/or quantifying analyte using an appropriate data analysis procedure. Frequency encoded sensors or sensor arrays comprise sensor elements with frequency domain resonance signals that can be uniquely identified under a defined range of operating conditions. Frequency encoding can be realized either by fabricating individual sensor elements with unique resonant frequencies or by tuning or modifying identical resonant devices to unique frequencies by adding or removing mass from individual sensor elements. The array of sensor elements comprises multiple resonant structures that may have identical or unique sensing layers. The sensing layers influence the sensor elements' response to analyte. Time-domain signal is acquired, typically in a single data acquisition channel, and typically using either (1) a pulsed excitation followed by acquisition of the free oscillatory decay of the entire array or (2) a rapid scan acquisition of signal from the entire array in a direct or heterodyne configuration. Spectrum analysis of the time domain data is typically accomplished with Fourier transform analysis. The methods and sensor arrays of the invention enable rapid and sensitive analyte detection, classification and/or identification of complex mixtures and unknown compounds, and quantification of known analytes, using sensor element design and signal detection hardware that are robust, simple and low cost.
Owner:PALO ALTO SENSOR TECH INNOVATION

System and method for magnetic-resonance-guided electrophysiologic and ablation procedures

InactiveUS7155271B2Increased resolution and reliabilityImprove accuracySurgical instrument detailsDiagnostic recording/measuringMr guidanceMr contrast agent
A system and method for using magnetic resonance imaging to increase the accuracy of electrophysiologic procedures is disclosed. The system in its preferred embodiment provides an invasive combined electrophysiology and imaging antenna catheter which includes an RF antenna for receiving magnetic resonance signals and diagnostic electrodes for receiving electrical potentials. The combined electrophysiology and imaging antenna catheter is used in combination with a magnetic resonance imaging scanner to guide and provide visualization during electrophysiologic diagnostic or therapeutic procedures. The invention is particularly applicable to catheter ablation, e.g., ablation of atrial fibrillation. In embodiments which are useful for catheter ablation, the combined electrophysiology and imaging antenna catheter may further include an ablation tip, and such embodiment may be used as an intracardiac device to both deliver energy to selected areas of tissue and visualize the resulting ablation lesions, thereby greatly simplifying production of continuous linear lesions. The invention further includes embodiments useful for guiding electrophysiologic diagnostic and therapeutic procedures other than ablation. Imaging of ablation lesions may be further enhanced by use of MR contrast agents. The antenna utilized in the combined electrophysiology and imaging catheter for receiving MR signals is preferably of the coaxial or “loopless” type. High-resolution images from the antenna may be combined with low-resolution images from surface coils of the MR scanner to produce a composite image. The invention further provides a system for eliminating the pickup of RF energy in which intracardiac wires are detuned by filtering so that they become very inefficient antennas. An RF filtering system is provided for suppressing the MR imaging signal while not attenuating the RF ablative current. Steering means may be provided for steering the invasive catheter under MR guidance. Other ablative methods can be used such as laser, ultrasound, and low temperatures.
Owner:THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE

Combined positron emission tomography and magnetic resonance tomography unit

Combined positron emission tomography and magnetic resonance tomography unit for imaging an examination object in an examination space, comprising a positron emission tomography unit that has a unit part assigned to the examination space, and a first evaluation unit for evaluating the electric signals for a positron emission tomography image of the examination object. The unit part in this case comprises a gamma ray detector with an assigned electronics unit. Furthermore, the combined unit comprises a magnetic resonance tomography unit and a second evaluation unit for evaluating the magnetic resonance signals for a magnetic resonance image of the examination object. The magnetic resonance unit in this case has a high frequency antenna device as well as a gradient coil system, the high frequency antenna device being arranged nearer to the examination space than the gradient coil system, as well as a high frequency shield arranged between the gradient coil system and the high frequency antenna device. The positron emission tomography unit part is arranged in this case between the high frequency shield and the high frequency antenna device, and is provided, at least on the side facing the high frequency antenna device, with a shielding cover that is caused by the high frequency antenna device and is opaque to high frequency radiation.
Owner:SIEMENS HEALTHCARE GMBH

Self-referencing/body motion tracking non-invasive internal temperature distribution measurement method and apparatus using magnetic resonance tomographic imaging technique

A noninvasive image measuring method of measuring internal organ / tissue temperature using an MRI system. Temperature measurement insusceptible to body motion and spatial variation of magnetic field is realized by utilizing the position and size of a temperature change region as a priori information to determine the phase distribution of the complex magnetic resonance signal of water proton at a given temperature point and by subtracting the phase distribution before the temperature change estimated (self-referred) from the phase distribution in the peripheral region for each pixel of the image, thereby eliminating the subtraction process of image before and after temperature change. The precision of temperature measurement can be enhanced by estimating a complex curved surface formed of the peripheral region in each temperature change region of the real-part and imaginary-part images of the complex magnetic resonance signal, and calculating the phase difference between an actually measured complex signal distribution and the estimated complex signal distribution of the complex signal distribution for each pixel, thereby reducing the estimation error due to phase transition from −π to +π occurring in a phase distribution. Furthermore, temperature can be measured through optimal imaging following up body motion by using an optical positioning system in combination even if the part being measured is shifted.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

Self-referencing/body motion tracking non-invasive internal temperature distribution measurement method and apparatus using magnetic resonance tomographic imaging technique

A noninvasive image measuring method of measuring internal organ/tissue temperature using an MRI system. Temperature measurement insusceptible to body motion and spatial variation of magnetic field is realized by utilizing the position and size of a temperature change region as a priori information to determine the phase distribution of the complex magnetic resonance signal of water proton at a given temperature point and by subtracting the phase distribution before the temperature change estimated (self-referred) from the phase distribution in the peripheral region for each pixel of the image, thereby eliminating the subtraction process of image before and after temperature change. The precision of temperature measurement can be enhanced by estimating a complex curved surface formed of the peripheral region in each temperature change region of the real-part and imaginary-part images of the complex magnetic resonance signal, and calculating the phase difference between an actually measured complex signal distribution and the estimated complex signal distribution of the complex signal distribution for each pixel, thereby reducing the estimation error due to phase transition from −π to +π occurring in a phase distribution. Furthermore, temperature can be measured through optimal imaging following up body motion by using an optical positioning system in combination even if the part being measured is shifted.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

Electromagnetic resonance-based nondestructive testing method for metal material

InactiveCN102230914AFacilitates non-destructive testingRealize detectionMaterial magnetic variablesCapacitanceMetallic materials
The invention discloses an electromagnetic resonance-based nondestructive testing method for metal materials. According to the method, responding resonance signals of eddy current testing are obtained through multipled resonant capacitors in testing coils, comparative analysis of the responding resonance signals is carried out, and the relationships between a defect size and a signal amplitude and between defect depth and a signal phase are calibrated in advance, thereby enabling convenient nondestructive testing of metal materials. The electromagnetic resonance-based nondestructive testing method not only can produce same defect detection effects as a plurality of conventional electromagnetic testing methods like single-frequency eddy current and pulsed eddy current do, but also can effectively detect internal defects in a workpiece and detect workpieces with complicated surface conditions such as a casting surface, an unsmooth surface, a surface with oil stains, a rust-resisting paint, a corrosion layer or other pollutants, etc., without contact under the condition of a high liftoff value; according to the method, no cleaning is needed for test pieces, and particularly, no cumbersome processes like magnetization and demagnetization of magnetic metal materials are needed.
Owner:XIAMEN ANRUI JIE ELECTRONICS TECH

Magnetic fluorescent composite nanoparticle, as well as preparation and use thereof

The invention discloses a magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 and a preparation method thereof. The method for preparing the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 comprises the steps of: firstly preparing hydrophobic monodisperse Fe3O4 nano-particles by adopting a chemical oil-phase high-temperature method, and modifying the surfaces of the hydrophobic Fe3O4 nano-particles to ensure that the hydrophobic Fe3O4 nano-particles are dispersed in a water phase; preparing luminescent CdTe quantum dots of which the surfaces are provided with carboxyl groups, and precipitating the luminescent CdTe quantum dots on the surfaces of the magnetic Fe3O4 nano-particles through the co-precipitation; then utilizing ligand exchange to modify a silane coupling agent on the surfaces of the luminescent CdTe quantum dots; and finally forming an outermost SiO2 coating layer through silane or silicon ester hydrolysis. The diameter of the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2 is between 30 and 50nm; the magnetic luminescent composite nano-particle Fe3O4 / CdTe / SiO2has double functions of magnetism and fluorescence at the same time, has strong and durable fluorescence intensity after labeling rat bone marrow-derived mesenchymal stem cells, and apparently reduces cellular magnetic resonance signals. The particle has broad application prospect in the fields such as biological labeling, bioseparation and the like.
Owner:SUN YAT SEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products