Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

117 results about "Interfacial oxide" patented technology

Quasi-hydrophobic Si-Si wafer bonding using hydrophilic Si surfaces and dissolution of interfacial bonding oxide

The present invention provides a method for removing or reducing the thickness of ultrathin interfacial oxides remaining at Si—Si interfaces after silicon wafer bonding. In particular, the invention provides a method for removing ultrathin interfacial oxides remaining after hydrophilic Si—Si wafer bonding to create bonded Si—Si interfaces having properties comparable to those achieved with hydrophobic bonding. Interfacial oxide layers of order of about 2 to about 3 nm are dissolved away by high temperature annealing, for example, an anneal at 1300°-1330° C. for 1-5 hours. The inventive method is used to best advantage when the Si surfaces at the bonded interface have different surface orientations, for example, when a Si surface having a (100) orientation is bonded to a Si surface having a (110) orientation. In a more general aspect of the invention, the similar annealing processes may be used to remove undesired material disposed at a bonded interface of two silicon-containing semiconductor materials. The two silicon-containing semiconductor materials may be the same or different in surface crystal orientation, microstructure (single-crystal, polycrystalline, or amorphous), and composition.
Owner:GLOBALFOUNDRIES INC

Method for direct bonding two silicon wafers for minimising interfacial oxide and stresses at the bond interface, and an SOI structure

A semiconductor substrate (1) comprises first and second silicon wafers (2,3) directly bonded together with interfacial oxide and interfacial stresses minimised along a bond interface (5), which is defined by bond faces (7) of the first and second wafers (2,3). Interfacial oxide is minimised by selecting the first and second wafers (2,3) to be of relatively low oxygen content, well below the limit of solid solubility of oxygen in the wafers. In order to minimise interfacial stresses, the first and second wafers are selected to have respective different crystal plane orientations. The bond faces (7) of the first and second wafers (2,3) are polished and cleaned, and are subsequently dried in a nitrogen atmosphere. Immediately upon being dried, the bond faces (7) of the first and second wafers (2,3) are abutted together and the wafers (2,3) are subjected to a preliminary anneal at a temperature of at least 400° C. for a time period of a few hours. As soon as possible after the preliminary anneal, and preferably, within forty-eight hours of the preliminary anneal, the first and second wafers (2,3) are fusion bonded at a bond anneal temperature of approximately 1,150° C. for a time period of approximately three hours. The preliminary anneal may be omitted if fusion bonding at the bond anneal temperature is carried out within approximately six hours of the wafers (2,3) being abutted together. An SOI structure (50) may subsequently be prepared from the semiconductor structure (1) which forms a substrate layer (52) supported on a handle layer (55) with a buried insulating layer (57) between the substrate layer (52) and the handle layer (55).
Owner:ANALOG DEVICES INC

Low-temperature bonding method for semiconductor without oxide layer

InactiveCN108573878AAchieve bondingSolve the problem of introducing a hydrophilic oxide layerSemiconductor/solid-state device manufacturingInterfacial oxideBond interface
The invention relates to a low-temperature bonding method for a semiconductor without an oxide layer, which relates to a semiconductor bonding process. A transition layer technology is adopted, a thinGe layer is introduced at a Si, Ge and SiO2 semiconductor bonding interface, and the low-temperature crystallization characteristics and the crystallization atomic migration characteristics of the Gematerial are used to realize non-oxide layer Si wafer bonding, Ge / Si bonding and GOI bonding. The low-temperature crystallization characteristics of a magnetron sputtering Ge layer are used to realize a non-interfacial oxide layer semiconductor bonding interface, a semiconductor Ge transition layer grows on the surface of a wafer after being cleaned, the low-temperature crystallization characteristics of the Ge are used, crystallization of the Ge transition layer is realized through low-temperature annealing, migration of atoms at the bonding interface is thus driven, and the oxide layer is finally dissociated. According to the method in the invention, the problem of introducing a hydrophilic oxide layer at the interface during a direct hydrophilic bonding process can be solved, crystallization of the semiconductor bonding interface transition layer can also be realized under the low temperature of 300 to 400 DEG C, and atomic bond bonding is thus realized.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products