Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

537results about How to "Significant difference" patented technology

System and Methods for Pharmacogenomic Classification

InactiveUS20140222349A1Good statistical effectDataset can also become very largeBiostatisticsProteomicsGenomicsLearning machine
The invention provides a system and methods for the determination of the pharmacogenomic phenotype of any individual or group of individuals, ideally classified to a discrete, specific and defined pharmacogenomic population(s) using machine learning and population structure. Specifically, the invention provides a system that integrates several subsystems, including (1) a system to classify an individual as to pharmacogenomic cohort status using properties of underlying structural elements of the human population based on differences in the variations of specific genes that encode proteins and enzymes involved in the absorption, distribution, metabolism and excretion (ADME) of drugs and xenobiotics, (2) the use of a pre-trained learning machine for classification of a set of electronic health records (EHRs) as to pharmacogenomic phenotype in lieu of genotype data contained in the set of EHRs, (3) a system for prediction of pharmacological risk within an inpatient setting using the system of the invention, (4) a method of drug discovery and development using pattern-matching of previous drugs based on pharmacogenomic phenotype population clusters, and (5) a method to build an optimal pharmacogenomics knowledge base through derivatives of private databases contained in pharmaceutical companies, biotechnology companies and academic research centers without the risk of exposing raw data contained in such databases. Embodiments include pharmacogenomic decision support for an individual patient in an inpatient setting, and optimization of clinical cohorts based on pharmacogenomic phenotype for clinical trials in drug development.
Owner:ASSUREX HEALTH INC

Modular belt with tapered oblong hinge pins

A modular conveyor belt (20) constructed of a series of rows (24, 25) of belt modules hingedly interlined by tapered oblong hinge pins (22) and suitable for following straight or curved conveyor paths. Aligned slots (30) formed in one set of hinge elements between successive rows are elongated in the direction of belt travel to allow the belt to fan out in turns. Fan-shaped apertures (38) formed in interleaved hinge elements of an adjacent row and aligned axially with the slots to admit a hinge pin (22) allow the belt to pivot at the hinge to articulate about a sprocket (181) or idler (186) or to enter and exit an incline. The oblong hinge pin has a first region at a first end (88) with a constant long axis to share the belt load among hinge elements encompassing the first region on straight runs. A second region of the hinge pin at an opposite second end (89) has a tapered oblong cross section, the long axis of which increases with distance from the second end to define a variable pitch and to spread the belt tension among the hinge elements at the outside of a turn encompassing the second region. Each belt row can be constructed of individual links stacked together on a support element (45) and retained by fasteners (52) or of integrally molded modules each comprising a transverse connecting member from which leading and trailing hinge elements extend. Accessory attachments, such as teeth (160) or sideguards (150), can be added to the belt. The belt can be driven by a cog, a roller chain, or other driving means driving lugs (172) extending from the bottom of the belt. The drive surfaces of the lugs can be obliquely arranged for better load sharing.
Owner:HARTNESS INT INC +1

Transparent conductive laminate and touch panel

InactiveUS20080152879A1Improve bending performanceTransmitted light can be suppressedLayered productsVacuum evaporation coatingSputteringIndium
A transparent conductive laminate includes: a first transparent dielectric thin film; a second transparent dielectric thin film; a transparent conductive thin film; a transparent film substrate having a thickness of 2 μm to 200 μm, and the first transparent dielectric thin film, the second transparent dielectric thin film, and the transparent conductive thin film formed on one side of the substrate in this order; a transparent pressure-sensitive adhesive layer; and a transparent base substrate bonded to another side of the transparent film substrate with a transparent pressure-sensitive adhesive layer interposed therebetween, wherein the first transparent dielectric thin film is formed by vacuum deposition, sputtering or ion plating and comprises a complex oxide containing 100 parts by weight of indium oxide, 0 to 20 parts by weight of tin oxide and 10 to 40 parts by weight of cerium oxide, a refractive index n1 of the first transparent dielectric thin film, a refractive index n2 of the second transparent dielectric thin film, and a refractive index n3 of the transparent conductive thin film satisfy a relationship: n2<n3≦n1, and the transparent base substrate is a transparent laminated base substrate having at least two transparent base films that are laminated with the transparent pressure-sensitive adhesive layer interposed therebetween.
Owner:NITTO DENKO CORP

Adsorbent for adsorption heat pump, adsorbent for humidity-control air conditioner, adsorption heat pump and humidity-control air conditioner

The present invention provides an adsorbent for adsorption heat pump and humidity-control air conditioner, which is capable of adsorbing an adsorbate therein and desorbing the adsorbate therefrom in a narrow relative vapor pressure range, and can be regenerated (desorption) at a low temperature. Also, the present invention provides an adsorption heat pump and humidity-control air conditioner using the adsorbent which can be effectively operated even by a low-temperature heat source, as well as methods of operating the adsorption heat pump and humidity-control air conditioner by effectively utilizing low-temperature exhaust heat. The absorbent of the present invention comprises zeolite containing (i) aluminum, (ii) phosphorus and (iii) iron and / or gallium in a skeletal structure thereof, which is substantially free from change in structure upon subjecting the adsorbent to adsorption and desorption of water vapor, and has an operable relative vapor pressure range in which a change in amount of water adsorption of the absorbent when changing the relative vapor pressure by 0.1 in a relative vapor pressure range of from 0.1 to 0.25 in a water vapor adsorption isotherm measured at a temperature of 25° C., is not less than 0.12 g / g.
Owner:MITSUBISHI CHEM CORP

Compact x-ray source and panel

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products