Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3358 results about "Excitation current" patented technology

A transformer exciting current is the current or amperes required to energize the core. Even with zero load, a transformer will draw a small amount of current due to internal loss. The excitation current is made up of two components.

Method and a measuring circuit for determining temperature from a PN junction temperature sensor, and a temperature sensing circuit comprising the measuring circuit and a PN junction

A switched current temperature sensing circuit (1) comprises a measuring transistor (Q1) which is located remotely of a measuring circuit (5) which applies three excitation currents (I1,I2,I3) of different values to the measuring transistor (Q1) in a predetermined current sequence along lines (10,11). Resulting base/emitter voltages from the measuring transistor (Q1) are applied to the measuring circuit (5) along the same two lines (10,11) as the excitation currents are applied to the measuring transistor (Q1). Voltage differences ΔVbe of successive base/emitter voltages resulting from the excitation currents are integrated in an integrating circuit (36) of the measuring circuit (5) to provide an output voltage indicative of the temperature of the measuring transistor (Q1). By virtue of the fact that the measuring transistor (Q1) is excited by excitation currents of three different values, the effect of current path series resistance in the lines (10,11) on the output voltage indicative of temperature is eliminated. The predetermined current sequence in which the excitation currents are applied to the measuring transistor (Q1) is selected to minimize the voltages in the integrating circuit (36) during integration of the voltage differences ΔVbe.
Owner:ANALOG DEVICES INC

Alternating-current brushless generator fault detection method based on exciter exciting current

The invention provides an alternating-current brushless generator fault detection method based on an exciter exciting current. The method comprises the following steps: firstly, measuring the direct-current component and each subharmonic amplitude value of the exciter exciting current of a generator set; and then, detecting whether the generator set generates electrical failures or not with a stator winding turn-to-turn short circuit diagnosis algorithm, a rotor winding turn-to-turn short circuit diagnosis algorithm, an exciter fault diagnosis algorithm and a rotary rectifier fault diagnosis algorithm, wherein the electrical failures comprise stator winding turn-to-turn short circuit, rotor winding turn-to-turn short circuit, exciter rotor winding turn-to-turn short circuit, exciter rotor winding interphase short circuit, open circuit of one diode of the rotary rectifier and short circuit of one diode of the rotary rectifier. According to the LabView development fault diagnosis algorithm, various electrical faults can be detected by measuring the exciter exciting current so as to save measurement points, and various invasive sensors do not need to be installed in the generator. The alternating-current brushless generator fault detection method has good instantaneity, and the on-line detection requirement can be satisfied.
Owner:NAVAL UNIV OF ENG PLA

Method and device for multicell joint optimization under coverage of cellular mobile communication network

ActiveCN102625326ASmall bad coverage areaBad coverage smallNetwork planningElectricityCoverage ratio
The invention discloses a method and a device for multicell joint optimization under coverage of a cellular mobile communication network. The method disclosed by the invention comprises the steps of: collecting the position information of all base stations in a target area; performing grid partitioning on the target area; measuring propagation loss from each base station to each grid point; traversing combinations of total emission power and antenna electrical parameters and making statistics on an adverse coverage ratio; and selecting a combination enabling the adverse coverage ratio to be minimal, and feeding optimal excitation current to each antenna. The device disclosed by the invention comprises an information collection module, a gridding processing module, a propagation loss determination module, a traversing solving module and a selecting module. According to the invention, by means of optimizing directional diagrams and emission power of array antennas to realize the multicell joint optimization orienting to an actual propagation environment under network coverage, the adverse coverage of an entire target area is minimal; and the method and the device not only can be applied to the multicell joint optimization orienting to the actual propagation environment under the network coverage, but also can be used for singly correcting the adverse coverage of exceptional cells.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products