Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

391 results about "Field weakening" patented technology

Automatic field-weakening method for built-in permanent magnet synchronous motor

InactiveCN101783536AExtended pole-to-pole flux leakage pathsRealize automatic field weakening speed expansionMagnetic circuit rotating partsLow speedPermanent magnet synchronous motor
The invention relates to an automatic field-weakening method for a built-in permanent magnet synchronous motor, which solves the problem that field-weakening speed is difficult to widen due to the fixed rotor excitation and small reactance of armature reaction of a direct axis in the conventional permanent magnet synchronous motor in the market. In a rotor magnetic structure of the permanent magnet synchronous motor, a magnetic flux short-circuit block is arranged in a magnetic flux isolating layer in a quadrature axis direction with the help of an automatic adjustment action of a spring; when the rotary speed of the rotor is low, the short-circuit block is positioned at a low-speed position so that interelectrode magnet leakage through the isolating layer is small; when the rotary speed of the rotor is increased, the short-circuit block gradually deviates from the low-speed position to move towards the edge of the rotor under the action of rotating centrifugal force, which expands the interelectrode magnet leakage path; and the leakage magnet flux passing through the isolating layer is increased and the main magnet flux is reduced so that the aim of automatic filed-weakening widening speed is fulfilled in the motor body and a larger speed-adjusting range is reached. The method can be applied to the permanent magnet motors which have uncertain pole numbers and tangential or radial magnet structures.
Owner:SHANGHAI MARITIME UNIVERSITY

Field weakening control method for built-in permanent magnet synchronous motor

The invention provides a field weakening control method for a built-in permanent magnet synchronous motor. The method comprises the following steps: motor speed closed-loop control in a field non-weakening region: the output of a speed loop is the current directive value i<*>q of an axis q, the current directive value i<*>d of an axis d is calculated from i<*>q according to an MTPA relation, and i<*>d, i<*>q and the actual feedback values id and iq thereof are subjected to closed-loop control to output the voltage directive values of the axis d and the axis q; difference value amplitude-limiting processing: whether to enter a field weakening region is judged, if yes, an output voltage amplitude value controls a PI (Proportional-Integral) controller to work and controls a PI adjustor to perform difference value amplitude-limiting processing and output Deltaiq, otherwise, the output voltage amplitude value controls the PI controller not to work, and the output is 0; in case of entering the field weakening region, the output i<*>q of the speed loop is only used as the current directive value of the axis d after MTPA calculation, and the sum of the output of the front beat of the speed loop before entering the field weakening region and Deltaiq serves as the current directive value of the axis q in the field weakening region.
Owner:WISDRI WUHAN AUTOMATION

Control method of IPM electromotor for driving electric motor car

The invention discloses a control method of an IPM electromotor for driving an electric motor car. According to the working characteristics of the IPM electromotor used on the electric motor car and the characteristics and advantages of various control methods, a segmental control strategy and a method for accurately detecting the start of the electromotor as well as the position and the rotational speed of a rotator during the operation provided are provided. A hall sensor is used for carrying out the method of rough positioning first and scanning next, so that the relatively accurately positioning of the initial position of the rotation in a static state can be realized, the electromotor can be successfully and easily started no matter in the case of idle load, light load or heavy load,and the reliability of the start and operation of the electromotor can be greatly improved. After the IPM electromotor is successfully started, output signals of the hall position sensor undergo rising edge capturing and trailing edge capturing by using software. According to a signal jumping edge, the position of the rotator is corrected in the cases of a low rotational speed and a high rotational speed. When the electromotor operates, a T method is adopted for speed measurement, and an algorithm undergoes certain adjustment in the cases of the low rotational speed and the high rotational speed. When the position and the rotational speed of the rotator during the operation are correctly detected, the segmental control strategy such as peak torque current control and field-weakening control can be adopted so as to ensure that a peak torque is output during the operation of the electromotor.
Owner:マイウェイ技研
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products