Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

386 results about "Fan-out" patented technology

In digital electronics, the fan-out is the number of gate inputs that the output of a logic gate drives. In most designs, logic gates are connected to form more complex circuits. While no logic gate input can be fed by more than one output, it is common for one output to be connected to several inputs. The technology used to implement logic gates usually allows a certain number of gate inputs to be wired directly together without additional interfacing circuitry. The maximum fan-out of an output measures its load-driving capability: it is the greatest number of inputs of gates of the same type to which the output can be safely connected.

Methods for dynamic wavelength add/drop in a ROADM optical network

A system and method for dynamically adding/dropping wavelengths in a reconfigurable optical add-drop multiplexer (ROADM) transport network is disclosed. The system includes at least one optical transponder, a plurality of optical fan-out devices, each arranged to receive an input signal from a network degree and coupled to at least one of a plurality of optical fan-in devices, each optical fan-in device arranged to output a signal to a network degree, the optical fan-out devices comprising at least one wavelength selective switch and the optical fan-in devices comprising at least one wavelength selective switch, the optical fan-out devices and optical fan-in devices being connected so as to enable signals input from each of the plurality of network degrees to be switched to another network degree of the plurality of network degrees; a plurality of demultiplexers for locally dropping selected wavelengths; a plurality of multiplexers for locally adding selected wavelengths; and at least one fiber switch interposed between the at least one optical transponder and the plurality of demultiplexers and multiplexers. The fiber switch is coupled to wavelengths and degrees that are allocated for a bandwidth-on-demand application. Other configurations include additional fan-in and fan-out devices interposed between a mux/demux assembly and the optical transponders to support wavelength redistribution applications.
Owner:AT&T INTPROP I L P

Computer network adapted for industrial environments

A network for connecting a plurality of devices and the components used in constructing the network. The network includes at least one fan-out device for connecting the devices to each other. The fan-out device includes a controller, a top port and a plurality of downstream ports. The controller monitors messages received by the ports and generates messages that are sent via the ports. The network also includes a plurality of network cables, one per port. The network preferably utilizes a cabling system that includes twisted pairs for communicating the messages via the Ethernet protocol and power conductors for distributing power to the various network devices. The fan-out device includes one power component associated with each of the ports. Each power component provides connections between the power lines in the network capble and the ports of the fan-out device. The power components are used to power the devices on the network and to monitor the power lines for problems. Switching circuitry in the power components allows the fan-out device to isolate cable runs connected thereto that have shorts or other problems. The fan-out device preferably stores a device identification number that the controller transmits on all of the ports in response to a message received on one of the downstream ports. The controller also generates a signal on the top port that causes any device connected to the fan-out device via the top port to ignore the message. One embodiment of the fan-out device provides a hub that is transparent to Ethernet protocols while not introducing the jitter into the signals associated with the re-transmission and synchronization functions performed by conventional hubs.
Owner:AGILENT TECH INC

Nonblocking and deterministic multirate multicast packet scheduling

A system for scheduling multirate multicast packets through an interconnection network having a plurality of input ports, a plurality of output ports, and a plurality of input queues, comprising multirate multicast packets with rate weight, at each input port is operated in nonblocking manner in accordance with the invention by scheduling corresponding to the packet rate weight, at most as many packets equal to the number of input queues from each input port to each output port. The scheduling is performed so that each multicast packet is fan-out split through not more than two interconnection networks and not more than two switching times. The system is operated at 100% throughput, work conserving, fair, and yet deterministically thereby never congesting the output ports. The system performs arbitration in only one iteration, with mathematical minimum speedup in the interconnection network. The system operates with absolutely no packet reordering issues, no internal buffering of packets in the interconnection network, and hence in a truly cut-through and distributed manner. In another embodiment each output port also comprises a plurality of output queues and each packet is transferred corresponding to the packet rate weight, to an output queue in the destined output port in deterministic manner and without the requirement of segmentation and reassembly of packets even when the packets are of variable size. In one embodiment the scheduling is performed in strictly nonblocking manner with a speedup of at least three in the interconnection network. In another embodiment the scheduling is performed in rearrangeably nonblocking manner with a speedup of at least two in the interconnection network. The system also offers end to end guaranteed bandwidth and latency for multirate multicast packets from input ports to output ports. In all the embodiments, the interconnection network may be a crossbar network, shared memory network, clos network, hypercube network, or any internally nonblocking interconnection network or network of networks.
Owner:TEAK TECH

Dynamic wavelength service over a ROADM optical network

A system and method for dynamically adding / dropping wavelengths in a reconfigurable optical add-drop multiplexer (ROADM) transport network to form a wave division multiplexing virtual private network is disclosed. The system includes at least one optical transponder, a plurality of optical fan-out devices, each arranged to receive an input signal from a network degree and coupled to at least one of a plurality of optical fan-in devices, each optical fan-in device arranged to output a signal to a network degree, the optical fan-out devices comprising at least one wavelength selective switch and the optical fan-in devices comprising at least one wavelength selective switch, the optical fan-out devices and optical fan-in devices being connected so as to enable signals input from each of the plurality of network degrees to be switched to another network degree of the plurality of network degrees; a plurality of demultiplexers for locally dropping selected wavelengths; a plurality of multiplexers for locally adding selected wavelengths; and at least one customer-dedicated fiber switch interposed between the at least one optical transponder and the plurality of demultiplexers and multiplexers. The fiber switch is coupled to wavelengths and degrees that are allocated for a bandwidth-on-demand application. Other configurations include additional fan-in and fan-out devices interposed between a mux / demux assembly and the optical transponders to support wavelength redistribution applications.
Owner:AT&T INTPROP I L P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products