Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

929 results about "Transimpedance amplifier" patented technology

In electronics, a transimpedance amplifier, (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

Method for integrating focusing and detection of cells and miniaturized system thereof

The invention discloses a method for integrating focusing and detection of cells and a miniaturized system thereof. The miniaturized system comprises a microfluidic chip, a data acquisition card, a miniature computer and a sample injection device, wherein the microfluidic chip is formed by a flow channel layer, a substrate layer and a PCB (Printed Circuit Board) which are aligned and packaged in sequence; the flow channel layer is provided with an asymmetric sinusoidal flow channel, a detection main flow channel, polyelectrolyte gel and a conductive-fluid storage pool; the polyelectrolyte gel, the conductive-fluid storage pool and a silver-silver chloride wire form a detection electrode; the silver-silver chloride wire is connected with the data acquisition card and the miniature computer by a transimpedance amplifier and a differential amplifier so as to form a differential impedance detection circuit of the cells; the miniature computer is used for realizing generation of pseudorandom excitation signals, processing of system response signals and analysis and display of multi-performance parameters of the cells. The method and the miniaturized system disclosed by the invention integrate the functions of focusing and detection of the cells, realizes miniaturization and portability of the system and can be widely used for biological study of blood cells and rare cells.
Owner:SOUTHEAST UNIV

Low-noise passive frequency mixer

The invention discloses a low-noise passive frequency mixer. The low-noise passive frequency mixer comprises a low-noise transconductance amplifier stage, a switch frequency mixing stage and a transimpedance amplifier stage. The low-noise transconductance amplifier stage mainly adopts a cross coupling master-slave noise cancellation technology, a main transconductance conduit adopts a cross coupled structure to double an equivalent transconductance value, an appropriate transconductance value is provided through the main transconductance conduit and the noise of the main transconductance conduit is lowered through a master-slave structure; the switch frequency mixing stage is used for modulating and filtering radiofrequency currents output from the low-noise transconductance amplifier stage and outputting intermediate frequency currents; the transimpedance amplifier stage consists of a full-differential operational transconductance amplifier and a load resistor; the operational transconductance amplifier is based on a feed-forward compensation technology, and a consequent pole point in a transfer function of the amplifier is offset by a zero point introduced to a feed-forward stage of the operational transconductance amplifier, so that a large unity-gain bandwidth is achieved; the load resistor is used for converting the intermediate frequency currents into intermediate frequency voltage signals which are then output, by virtue of a voltage-current negative-feedback connection way. The low-noise passive frequency mixer has the characteristics of low noise, high gain and low power consumption.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products