Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2374 results about "Cross coupled" patented technology

FMOD transceivers including continuous and burst operated TDMA, FDMA, spread spectrum CDMA, WCDMA and CSMA

Binary and Quadrature Feher's Modulation (F-Modulation, or FMOD) Transmitter-Receiver systems and circuits exhibit reduced envelope fluctuation and peak radiation, and increased efficiency. A subclass of these systems has a constant envelope. They advantageously provide lower power operation with improved performance including robust BER performance, and compatibility with both linearly and nonlinearly amplified narrow spectrum, and without disadvantages of conventional BPSK, DBPSK QPSK and pi/4-QPSK. Feher's BPSK (FBPSK) is an improved efficiency transmitter which is compatible with conventional BPSK receivers. FBPSK modems are based on using quadrature structure where Q-channel data is inserted in quadrature with I-channel data for certain applications. The Q-channel data may be “offset” from the I-channel data by an amount selectable between zero and a specified time. Further improvement in the spectrum is attained using correlation between I and Q channels. FBPSK modem is shown to meet the IEEE 802.11 specified spectral direct sequence spread spectrum mask (−30 dB point) for wireless LAN, and leads to an output power gain of 6.5 dB over conventional BPSK modems. The cross-coupled quadrature FMOD structure is also suitable for continuous mode and for burst operated TDMA, FDMA, CDMA, WCDMA and CSMA Frequency Modulation Quadrature AM (QAM), QPSK and offset QPSK, as well as pi/4-shifted QPSK modems/processors. Reduced modulation index Gaussian FSK (GFSK), multilevel FM and cross-coupled Quadrature Amplitude Modulated (QAM) transmitters and combinations of these modulations and corresponding coherent demodulators are disclosed. Controlled rise and fall time descriptions of burst operated systems are included.
Owner:INTEL CORP

Apparatus and method for controlling a force-activated controller

A servo controlled system is disclosed for providing simulated feel equivalent to that of traditional mechanical hand controllers using servomotors. Position and force sensor signals are processed and used in a feedback loop that controls the motor mechanically connected to the stick. The overall feedback loop is comprised of a low-level motor feedback loop, and high-level force feel loop. The two loops have associated performance parameters that can be specified independently. The high-level feel force loop is comprised of a static and dynamic performance components. Static and dynamic performance components can be specified independently. The system allows variable and/or additional force cues to be specified externally to the system and felt by the operator. The system also allows external signal to backdrive die stick to follow a specified motion. The control framework permits the electronic coupling of the motion and applied forces of pilot and co-pilots in a dual arrangement while retaining the above-mentioned features. It also allows asymmetric force feel gradients to be implemented for each stick, or for a stick relative to a second one. A zero breakout or detent can be provided at the stick null displacement. For cross-coupled sticks, the detent can be shared as in a mechanically cross-coupled system, implemented independently on each slick, or any combination of these two. The control framework also provides the simulation of mechanical compliance in the cross-coupling of the two sticks in case of a jam or of force fight between the pilots, and automatic de-coupling of the sticks.
Owner:BOMBARDIER CORP

Circuit arrays having cells with combinations of transistors and nanotube switching elements

Circuit arrays having cells with combinations of transistors and nanotube switches. Under one embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, reference line, and release line. Bit lines are arranged orthogonally relative to word lines and each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor coupled to a nanotube switching element. The nanotube switching element is switchable to at least two physical positions at least in part in response to electrical stimulation via the reference line and release line. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Under another embodiment, a circuit array includes a plurality of cells arranged in an organization of words, each word having a plurality of bits. Each cell is responsive to a bit line, word line, and reference line. Each word line and bit line are shared among a plurality of cells. Each cell is selectable via the activation of the bit line and word line. Each cell includes a field effect transistor and a nanotube switching element. Each nanotube switching element includes a nanotube article positioned between a set electrode and a release electrode. The set electrode may be electrically stimulated to electro-statically attract the nanotube article into contact with the set electrode and the release electrode may be electrically stimulated to electro-statically attract the nanotube article out of contact with the set electrode. Information state of the cell is non-volatilely stored via the respective physical position of the nanotube switching element. Cells are arranged as pairs with the nanotube switching elements of the pair being cross coupled so that the set electrode of one nanotube switching element is coupled to the release electrode of the other and the release electrode of the one nanotube switching element being coupled to the set electrode of the other. The nanotube articles are coupled to the reference line, and the source of one field effect transistor of a pair is coupled to the set electrode to one of the two nanotube switching elements and the source of the other field effect transistor of the pair is coupled to the release electrode to the one of the two nanotube switching elements.
Owner:NANTERO

System and method for linearizing a CMOS differential pair

An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. LC filters integrated onto the substrate in conjunction with image reject mixers provide image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. Active filters utilize multi track spiral inductors with shields to increase circuit Q. The filters incorporate a gain stage that provides improved dynamic range through the use of cross coupled auxiliary differential pair CMOS amplifiers to cancel distortion in a main linearized differential pair amplifier. Frequency planning provides additional image rejection. Local oscillator signal generation methods on chip reduce distortion. A PLL generates needed out of band LO signals. Direct synthesis generates in band LO signals. PLL VCOs are centered automatically. A differential crystal oscillator provides a frequency reference. Differential signal transmission throughout the receiver is used. ESD protection is provided by a pad ring and ESD clamping structure. Shunts utilize a gate boosting at each pin to discharge ESD build up. An IF VGA utilizes distortion cancellation achieved with cross coupled differential pair amplifiers having their Vds dynamically modified in conjunction with current steering of the differential pairs sources.
Owner:AVAGO TECH INT SALES PTE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products