Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1048 results about "Cascode" patented technology

The cascode is a two-stage amplifier that consists of a common-emitter stage feeding into a common-base stage. Compared to a single amplifier stage, this combination may have one or more of the following characteristics: higher input–output isolation, higher input impedance, high output impedance, higher bandwidth.

Low-Noise High Efficiency Bias Generation Circuits and Method

A bias generation method or apparatus defined by any one or any practical combination of numerous features that contribute to low noise and/or high efficiency biasing, including: having a charge pump control clock output with a waveform having limited harmonic content or distortion compared to a sine wave; having a ring oscillator to generating a charge pump clock that includes inverters current limited by cascode devices and achieves substantially rail-to-rail output amplitude; having a differential ring oscillator with optional startup and/or phase locking features to produce two phase outputs suitably matched and in adequate phase opposition; having a ring oscillator of less than five stages generating a charge pump clock; capacitively coupling the clock output(s) to some or all of the charge transfer capacitor switches; biasing an FET, which is capacitively coupled to a drive signal, to a bias voltage via an “active bias resistor” circuit that conducts between output terminals only during portions of a waveform appearing between the terminals, and/or wherein the bias voltage is generated by switching a small capacitance at cycles of said waveform. A charge pump for the bias generation may include a regulating feed back loop including an OTA that is also suitable for other uses, the OTA having a ratio-control input that controls a current mirror ratio in a differential amplifier over a continuous range, and optionally has differential outputs including an inverting output produced by a second differential amplifier that optionally includes a variable ratio current mirror controlled by the same ratio-control input. The ratio-control input may therefore control a common mode voltage of the differential outputs of the OTA. A control loop around the OTA may be configured to control the ratio of one or more variable ratio current mirrors, which may particularly control the output common mode voltage, and may control it such that the inverting output level tracks the non-inverting output level to cause the amplifier to function as a high-gain integrator.
Owner:PSEMI CORP

Low voltage CMOS circuit for on/off chip drive at high voltage

A low voltage CMOS circuit and method provide output current ability meeting multimode requirements of high voltage off-chip drivers while protecting the CMOS devices from various breakdown mechanisms. The circuit and method utilize intermediate voltages between two power rails and voltage division techniques to limit the voltages to acceptable limits for drain-to-source, gate-to-drain, and gate-to-source of CMOS devices in any chosen technology. The circuit comprises first and second CMOS cascode chains connected between a high voltage power rail, e.g 5 volt and a reference potential power rail, e.g. ground. Each CMOS cascode chain comprises first and second p-type MOS devices in series with first and second n-type MOS devices. An input circuit is coupled to a node at the midpoint of the first CMOS cascode chain. A bias voltage, typically 3.3 volts is connected to the NMOS devices in the first and CMOS cascode chains. A second bias voltage is coupled to the PMOS devices in the first and second CMOS cascode chains. An output is provided from the second CMOS cascode chain to a third CMOS cascode chain for purposes of providing sufficient pullup capability to drive an output circuit comprising a fourth CMOS cascode chain between the high and reference potentials without exceeding the breakdown mechanisms for any MOS device in the CMOS cascode chains.
Owner:GOOGLE LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products