Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2103 results about "Digital down converter" patented technology

In digital signal processing, a digital down-converter (DDC) converts a digitized, band limited signal to a lower frequency signal at a lower sampling rate in order to simplify the subsequent radio stages. The process preserves all the information in the original signal less that which is lost to rounding errors in the mathematical processes. The input and output signals can be real or complex samples. Often the DDC converts from the raw radio frequency or intermediate frequency down to a complex baseband signal.

High sensitivity snap shot CMOS image sensor

The present invention is directed to a solid state imaging device comprising a red pixel, a blue pixel, a first green pixel, a second green pixel, two analog-to-digital converters and a color interpolation circuit. The first analog-to-digital converter converts the output of the red pixel and output of the blue pixel into digital signals. The second analog-to-digital converter converts the output of the first green pixel and output of the second green pixel into digital signals. The color interpolation circuit combines the digital signals to determine the color of the pixel.
The solid state imaging device may further comprise a third analog-to-digital converter, a fourth analog-to-digital converter, a programmable clock generator and a control. The third analog-to-digital converter converts the output of the blue pixel into a digital signal and the fourth analog-to-digital converter converts the output of the second green pixel into a digital signal. The programmable clock generator has a first clock frequency and a second clock frequency, where the first clock frequency is slower than the second clock frequency. The control is coupled to the programmable clock generator, the third analog-to-digital converter and the fourth analog-to-digital converter. The control deactivates the third and fourth analog-to-digital converters if the programmable clock generator is at the first clock frequency, and the control activates the third and fourth analog-to-digital converters if the programmable clock generator is at the second clock frequency.
Owner:ESS TECH INT INC +1

Successive approximation analog-to-digital converter with pre-loaded SAR registers

A SAR converter having enhanced performance by virtue of effectively pre-loading the SAR's most significant bits with a value that makes the associated DAC output almost equal to the signal to be converted. A normal SAR conversion is then completed with the SAR bits that have not been pre-loaded. The value used to pre-load the most significant bits of the SAR is preferably obtained from a low-resolution, high-speed converter, such as a flash. The range of DAC bits used in the normal SAR part of the conversion may be increased such that errors up to a certain magnitude in the high-speed converter can be corrected. Reducing power consumption of a SAR system can be readily accomplished by reducing comparator supply voltage. For a SAR converter architecture using a CAPDAC array or CAPDAC (capacitor array DAC), fairly large variations in comparator input voltage can be expected under these circumstances. If the input voltage variation becomes too large, damage to the comparator input devices can occur, or inaccuracies may develop. In one embodiment of the invention, the most significant bits are provided by sampling the input signal through a flash ADC that does not suffer from the input voltage restriction described above.
Owner:ANALOG DEVICES INC

Sequential approximation analog to digital converter with digital correction and processing method thereof

The invention discloses a sequential approximation analog to digital converter with digital correction and a processing method thereof aiming at the defect of difficult composition manufacture of a coupling capacitor in the traditional sequential approximation analog to digital converter. The sequential approximation analog to digital converter comprises a main DAC (Digital Analogue Converter), acalibration DAC, a comparer, a control circuit and a storage. The sequential approximation analog to digital converter is characterized in that the main DAC comprises a high-K-bit CDAC (Capacitance Digital Analogue Converter) and a low-N-bit CDAC. Introduced system errors and capacitance matching errors are digitally corrected and eliminated, error voltages corresponding to capacitors in the high-K-bit CDAC are quantized and stored in the storage, and two-digit 0 are added behind the tail of the quantized residual error voltage digital code and participate in the calculation of the error voltages. When normal conversion is carried out, the error voltage digital codes are accumulated and then last two digits are discarded, the remain digital codes are used as the input of the calibration DAC, thus the accuracy of the analog to digital converter is improved.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products