Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3115results about "Physical parameters compensation/prevention" patented technology

A/D converter having a dynamic encoder

An A / D converter includes a resistor ladder for generating a plurality of reference potentials, a comparing section for comparing each of the reference potentials against an input analog signal to output a thermometric code, and a dynamic encoder composed of a combinational circuit to encode the thermometric code to a binary code by responding a clock signal. The A / D conversion is finished in a single clock cycle at a high speed, with a reduced number of elements and reduced power dissipation.
Owner:NEC ELECTRONICS CORP

Method and apparatus for preparing signals to be compared to establish predistortion at the input of an amplifier

The invention relates to a method of preparing signals (X and Y) to be compared to establish predistortion at the input of an amplifier (12), the signals comprising a signal (X) before amplification and a signal (Y) after amplification by said amplifier. Preparation includes time aligning (22) the signal before amplification (X) with the signal after amplification (Y) before using them to establish said predistortion. The invention preferably operates in two stages, namely a stage of coarse time alignment, in which the signal before amplification (X) is subjected to a time delay comprising an integer number of first time units, and a stage of fine time alignment, in which a delay or advance value of a fraction of the first time unit is determined.
Owner:EVOLIUM

Circuit and method for cancellation of column pattern noise in CMOS imagers

A circuit and method measure the output voltage of a CMOS pixel in a manner that substantially reduces all columnar pattern noise due to mismatches in the signal processing circuits including the correlated double sampling amplifiers and A / D converters. The circuit includes a test switch, operatively connected between a reference voltage source and a correlated double sampling amplifier, for applying a test voltage from the reference voltage source when the state of the test switch is ON to the correlated double sampling amplifier. The reference voltage source produces a voltage corresponding to a full-scale voltage level to enable the determination of a gain error in the correlated double sampling amplifier and / or A / D converter; a voltage corresponding to ground to enable the determination of an offset error in the correlated double sampling amplifier and / or A / D converter; and a plurality of analog voltages ranging from analog ground to a full-scale voltage level to enable the determination of non-linearity errors in the A / D converter.
Owner:SMAL CAMERA TECH

Analog-to-digital converter and semiconductor device

An electronic apparatus includes a CMOS image sensor and a signal processor operable to process an output signal from the CMOS image sensor. The CMOS image sensor includes the following elements: an imaging region; a reference signal generator operable to generate a reference signal; a comparator operable to compare the reference signal generated by the reference signal generator with a signal transmitted from the imaging region; a counter operable to count, in parallel with comparison performed by the comparator, a predetermined count clock and to hold a count value at the time of completion of comparison performed by the comparator; and a reference signal supply interface unit operable to supply the reference signal generated by the reference signal generator to a plurality of comparators via different signal lines, respectively.
Owner:SONY CORP

Digital to analog converter with a weighted capacitive circuit

D / A converter of this invention including n+1 capacitors in total consisting of one terminating capacitor (C0) and n binary-weighted capacitors (C1-4) that are subjected to binary weighting ratio of 1:2:4: . . . :2(n−1), and, an inverting amplifier (INV1), further comprising: a feedback switching means (SWR5) provided between the input and output of the inverting amplifier (INV1); a switching means for terminating operation (SWR0) supplies one of two main reference voltages (VB,VT) to the terminating capacitor (C0), and then, makes connection of the terminating capacitor (C0) to the output of the inverting amplifier (INV1); a plurality of switching means for input operation (SWD1-4,SWR1-4) makes selection of one of the two main reference voltages (VB,VT) to be provided for the n binary-weighted capacitors (C1-4) depending on digital data (D1-4), and then, makes connection of the second terminal side of the n binary-weighted capacitors (C1-4) to the output of the inverting amplifier (INV1).
Owner:LINEAR CELL DESIGN COJ

Digital signal processing based de-serializer

A DSP based SERDES performs compensation operations to support high speed de-serialization. A receiver section of the DSP based SERDES includes one or more ADCs and DSPs. The ADC operates to sample (modulated) analog serial data and to produce digitized serial data (digital representation of the modulated analog serial data). The DSP communicatively couples to the ADC and receives the digitized serial data. Based upon the known characteristics of the digitized serial data and the digitized serial data itself, the DSP determines compensation operations to be performed upon the serial data to compensate for inadequacies of the receiver and / or channel response. These compensation operations may be (1) performed on the analog serial data before digitization by the ADC; (2) applied to the ADC to modify the operation of the ADC; and / or (3) performed on the digitized serial data by the DSP or another device.
Owner:AVAGO TECH INT SALES PTE LTD

Digital predistortion apparatus and method for a wideband power amplifier

A method and apparatus compensate for a non-linear characteristic of a wideband power amplifier in a transmitter for a communication system, which has the wideband power amplifier for amplifying a digital input signal. The method involves the steps of (a) generating an address based on the digital input signal, reading a distortion control value corresponding to the address from a look-up table, and applying the read distortion control value to the digital input signal to predistort the digital input signal; (b) frequency up-converting the predistorted signal and amplifying the frequency up-converted signal; (c) frequency down-converting the amplified signal and compensating for a delay of the frequency down-converted signal; and (d) updating a predetermined distortion control value in the look-up table to compensate for an error value generated in the power amplifier and an analog path occurring in steps (b) and (c) based on the compensated signal.
Owner:SAMSUNG ELECTRONICS CO LTD

Systems and methods for mitigating latency in a data detector feedback loop

Methods and systems for mitigating latency in a data detector feedback loop are included. For example, a method for reducing latency in an error corrected data retrieval system is included. The method includes performing an analog to digital conversion at a sampling instant to create a digital sample, and performing a data detection on the digital sample to create a detected output. The detected output is compared with the digital sample to determine a phase error. During an interim period, the digital sample is adjusted to reflect the phase error to create an adjusted digital sample. After the interim period, the sampling instant is adjusted to reflect the phase error.
Owner:LSI CORP +1

Method and circuit for dynamic calibration of flash analog to digital converters

A method and structure for calibrating an analog to digital converter comprises an input signal; a driver receiving the input signal, wherein the driver outputs a driver output signal; a flash circuit receiving the driver output signal, wherein the flash circuit outputs a comparison result equaling 2n-1 digital outputs; an encoding logic unit encoding the comparison result into n digital bits as an output signal; a calibration engine outputting a calibration input adjust signal, a reference adjust signal, a driver gain adjust signal, a driver offset adjust signal; and a calibration input circuit receiving the calibration input adjust signal, wherein the driver receives the driver gain adjust signal and the driver offset adjust signal, wherein the flash circuit receives the reference adjust signal, wherein the calibration engine receives n digital bits, and controls an operation of the driver or flash circuit based on the output signal.
Owner:IBM CORP

DMA controller that restricts ADC from memory without interrupting generation of digital words when CPU accesses memory

DMA controller for mixed signal device. A mixed signal integrated circuit with memory control is disclosed. A data conversion circuit is provided that is operable to receive an analog input signal and convert discrete samples thereof at a predetermined sampling rate to a digital representations thereof as a plurality of digital words. A memory stores the digital words generated by the data conversion circuit. A processor is included on the integrated circuit and operable to access the memory to output select ones of the digital words for processing thereof in accordance with a predetermined processing algorithm. A memory access controller controls access to the memory by the data conversion circuit and the processor. The memory access controller is operable to restrict access to the memory by the data conversion circuit without interrupting the generation of digital words therefrom when the processor is accessing the memory, and allowing access to the memory by the data conversion circuitry when the processor is not accessing the memory, such that the data conversion circuit can transfer currently generated digital words and previously generated and non stored digital words for storage in said memory upon gaining access thereto.
Owner:SILICON LAB INC

Analog-to-digital converter and semiconductor device

An electronic apparatus includes a CMOS image sensor and a signal processor operable to process an output signal from the CMOS image sensor. The CMOS image sensor includes the following elements: an imaging region; a reference signal generator operable to generate a reference signal; a comparator operable to compare the reference signal generated by the reference signal generator with a signal transmitted from the imaging region; a counter operable to count, in parallel with comparison performed by the comparator, a predetermined count clock and to hold a count value at the time of completion of comparison performed by the comparator; and a reference signal supply interface unit operable to supply the reference signal generated by the reference signal generator to a plurality of comparators via different signal lines, respectively.
Owner:SONY CORP

Extended range digital-to-analog conversion

A conversion system converts an input signal from a digital signal to an analog signal over an extended dynamic range. The system includes a DAC system and a mode selector. The mode selector selects a mode of operation for the digital-to-analog converter system from a plurality of modes. The mode selector selects a mode according to a characteristic of the input signal. Each of the modes is associated with an instantaneous dynamic range and quantization noise level of the DAC system. The ensemble of modes provides an improvement in total or effective dynamic range compared to any DAC component within the DAC system.
Owner:NORTHROP GRUMMAN SYST CORP

Switched-capacitor circuit with scaled reference voltage

A pipelined analog-to-digital converter (ADC) (30) with improved precision is disclosed. The pipelined ADC (30) includes a sequence of stages (20), each of which includes a sample-and-hold circuit (22), an analog-to-digital converter (23), and the functions of a digital-to-analog converter (DAC) (25), an adder (24), and a gain stage (27) at which a residue signal (RES) is generated for application to the next stage (20) in the sequence. A multiplying DAC (28) performs the functions of the DAC (25), adder (24), and gain stage (27) in the stage (20), and is based on an operational amplifier (29). Sample capacitors (C10, C20) and reference capacitors (C122, C222) receive the analog input from the sample-and-hold circuit (22) in a sample phase; parallel capacitors (C121, C221) are provided to maintain constant circuit gain. Extended reference voltages (VREFPX, VREFNX) at levels that exceed the output range (V0+, V0−) of the operational amplifier (29) are applied to the reference capacitors, in response to the digital output of the analog-to-digital converter (23) in its stage (20). The reference capacitors (C12, C22) are scaled according to the extent to which the extended reference voltages (VREFPX, VREFNX) exceed the op amp output levels (V0+, V0−). The effects of noise on the reference voltages (VREFPX, VREFNX) on the residue signal (RES) are thus greatly reduced.
Owner:TEXAS INSTR INC

Systems and Methods for Mitigating Latency in a Data Detector Feedback Loop

Various embodiments of the present invention provide systems and methods for mitigating latency in a data detector feedback loop. For example, a method for reducing latency in an error corrected data retrieval system is disclosed. The method includes performing an analog to digital conversion at a sampling instant to create a digital sample, and performing a data detection on the digital sample to create a detected output. The detected output is compared with the digital sample to determine a phase error. During an interim period, the digital sample is adjusted to reflect the phase error to create an adjusted digital sample. After the interim period, the sampling instant is adjusted to reflect the phase error.
Owner:LSI CORPORATION +1

Compensator for removing nonlinear distortion

The present invention is a computationally-efficient compensator for removing nonlinear distortion. The compensator operates in a digital post-compensation configuration for linearization of devices or systems such as analog-to-digital converters and RF receiver electronics. The compensator also operates in a digital pre-compensation configuration for linearization of devices or systems such as digital-to-analog converters, RF power amplifiers, and RF transmitter electronics. The compensator effectively removes nonlinear distortion in these systems in a computationally efficient hardware or software implementation by using one or more factored multi-rate Volterra filters. Volterra filters are efficiently factored into parallel FIR filters and only the filters with energy above a prescribed threshold are actually implemented, which significantly reduces the complexity while still providing accurate results. For extremely wideband applications, the multi-rate Volterra filters are implemented in a demultiplexed polyphase configuration which performs the filtering in parallel at a significantly reduced data rate. The compensator is calibrated with an algorithm that iteratively subtracts an error signal to converge to an effective compensation signal. The algorithm is repeated for a multiplicity of calibration signals, and the results are used with harmonic probing to accurately estimate the Volterra filter kernels. The compensator improves linearization processing performance while significantly reducing the computational complexity compared to a traditional nonlinear compensator.
Owner:LINEARITY LLC

Methods and systems for DSP-based receivers

Digital signal processing based methods and systems for receiving data signals include parallel receivers, multi-channel receivers, timing recovery schemes, and, without limitation, equalization schemes. The present invention is implemented as a multi-path parallel receiver in which an analog-to-digital converter (“ADC”) and / or a digital signal processor (“DSP”) are implemented with parallel paths that operate at lower rates than the received data signal. In an embodiment, a parallel DSP-based receiver in accordance with the invention includes a separate timing recovery loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate automatic gain control (AGC) loop for each ADC path. In an embodiment, a parallel DSP-based receiver includes a separate offset compensation loop for each ADC path. In an embodiment the present invention is implemented as a multi-channel receiver that receives a plurality of data signals.
Owner:AVAGO TECH INT SALES PTE LTD

Adaptive mismatch compensators and methods for mismatch compensation

In a compensator for compensating mismatches, and in methods for such compensation, the compensator compensates for mismatches in output signals of a system with mismatches during normal operation of the system with mismatches. The compensator comprises: a mismatch estimator that monitors at least two mismatched signals output by the system with mismatches during normal operation and that generates matching parameters indicating an amount of mismatch between the at least two mismatched signals, the mismatch estimator updating the matching parameters during normal operation of the system with mismatches, and a mismatch equalizer that compensates mismatches in the mismatched signals output by the system with mismatches during normal operation of the system with mismatches in response to the matching parameters.
Owner:LINEARITY LLC

Adaptive spectral noise shaping to improve time to digital converter quantization resolution using dithering

A novel and useful apparatus for and method of improving the quantization resolution of a time to digital converter in a digital PLL using noise shaping. The TDC quantization noise shaping scheme is effective to reduce the TDC quantization noise to acceptable levels especially in the case of integer-N channel operation. The mechanism monitors the output of the TDC circuit and adaptively generates a dither (i.e. delay) sequence based on the output. The dither sequence is applied to the frequency reference clock used in the TDC which adjusts the timing alignment between the edges of the frequency reference clock and the RF oscillator clock. The dynamic alignment changes effectively shape the quantization noise of the TDC. By shaping the quantization noise, a much finer in-band TDC resolution is achieved resulting in the quantization noise being pushed out to high frequencies where the PLL low pass characteristic effectively filters it out.
Owner:TEXAS INSTR INC

Gamma correction D/A converter, source driver integrated circuit and display having the same and D/A converting method using gamma correction

In a gamma correction digital-to-analog converter, one of first gamma correction reference voltage signals is selected as a first corresponding gray scale signal based on lower m+n bits of a k bit digital input signal when upper l bits of the k bit input signal correspond to an upper or lower code set, where k=l+m+n, and where k, l, m and n are integers. A pair of adjacent second gamma correction reference voltage signals is selected from second gamma correction reference voltage signals based on upper l+m bits when the upper l bits correspond to a middle code set, and one is selected from the pair of second gamma correction reference voltage signals and 2n−1 divided signals as a second corresponding gray scale signal, the divided signals being obtained by dividing an interval between the selected pair into 2n levels. The first or second gray scale signal is selected to be output.
Owner:SAMSUNG ELECTRONICS CO LTD

Gradient insensitive split-core digital to analog converter

Digital to analog converter circuits and methods are provided for producing an analog output voltage indicative of a digital input signal with at least partial insensitivity to error gradients. Described are split-core resistive elements, which include a plurality of one-dimensional or multi-dimensional resistive strings, that may be used to reduce or substantially eliminate the effects that error gradients have on the linearity of the analog output voltages of a resistive string or interpolating amplifier DACs. The resistor strings that make up the split-core resistive elements are configured in such a manner that combining respective output voltages from each of the resistor strings results in an analog output voltage that is at least partially insensitive to the effects of error gradients.
Owner:ANALOG DEVICES INT UNLTD

Highly linear analog-to-digital conversion system and method thereof

A highly linear analog-to-digital (ADC) conversion system has an analog front-end device in cascade with a standard ADC converter, and a tunable digital non-linear equalizer. The equalizer corrects the quantization distortion, deviations from ideal response, and additive noises generated by the analog front-end device and ADC converter. The equalizer is formed by three main parts: Generate Function Streams Unit, Finite Impulse Response FIR filters and a summer. The equalizer receives the unequalized output from the ADC converter and generates a plurality of monomial streams in a systolic fashion. Each of the monomial streams is passed through a corresponding linear finite impulse response FIR filter. A convolution sum of all outputs from the FIR filters produces a unique equalized output with the non-linear distortion reduced to a satisfactory level. The FIR filter coefficients are determined by an Identity Equalizer Coefficient Unit, and a Test Signal Generator with different types of test signals. The FIR filter coefficients are set to minimize an error function.
Owner:MASSACHUSETTS INST OF TECH

Method of removing noise from digital moving picture data

Provided is a method of removing noise from digital moving picture data reducing the number of frames used in a temporal filtering operation and able to detect motion between frames easily. The method comprises a method of spatial filtering, a method of temporal filtering, and a method of performing the spatial filtering and the temporal filtering sequentially. The spatial filtering method applies a spatial filtering in a YCbCr color space, preserving a contour / edge in the image in the spatial domain, and generating a weight that is adaptive to the noise for discriminating the contour / edge in the temporal filtering operation. The temporal filtering method applies temporal filtering based on motion detection and scene change detection, compensating for global motion, the motion detection considering the brightness difference and color difference of the pixels compared between frames in the temporal filtering operation, and a weight that is adaptive to the noise for detecting the motion in the temporal filtering operation. The spatial filtering method is preferably performed first, and the temporal filtering method is performed with the result of the spatial filtering.
Owner:SAMSUNG ELECTRONICS CO LTD +1

Method and apparatus for adaptive DC level control

A method and apparatus is provided for DC level control in a line card. The method includes receiving a digital input signal, determining a first DC component value of the digital input signal at a first preselected time, and determining a second DC component value of the digital input signal at a second preselected time. The method further includes determining a difference between the first DC component value and the second DC component value. The method includes providing the first DC component value to a digital-to-analog converter in response to determining that the difference is less than a first preselected value. The apparatus includes a digital-to-analog converter and logic. The logic is coupled to the digital-to-analog converter, wherein the logic is capable of receiving a digital input signal, determining a first DC component value of the digital input signal at a first preselected time, and determining a second DC component value of the digital input signal at a second preselected time. The logic is farther capable of determining a difference between the first DC component value and the second DC component value, and providing the first DC component value to the digital-to-analog converter in response to determining that the difference is less than a first preselected value.
Owner:MICROSEMI SEMICON U S

Flash ADC receiver with reduced errors

Symbol decoding errors at a receiver utilising a flash analog to digital converter (ADC) can be reduced by adjusting a reference voltage level of the ADC where a decoding error rate at the reference voltage level exceeds a threshold.
Owner:CIENA

Time difference adders, time difference accumulators, sigma-delta time-to-digital converters, digital phase locked loops and temperature sensors

A time difference adder included in a system-on-chip (SOC) includes a first register unit and a second register unit. The first register unit is configured to receive first and second input signals having a first time difference, and generate a first output signal in response to a first signal. The second register unit is configured to receive third and fourth input signals having a second time difference, and generate a second output signal having a third time difference with respect to the first output signal in response to the first signal. The third time difference corresponds to a sum of the first time difference and the second time difference.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products