Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

99 results about "Time to digital conversion" patented technology

Two-stage time-to-digital converter

The invention belongs to the field of microelectronics and time measurement, and particularly relates to a two-stage time-to-digital converter. The circuits of the converter can be applied to all digital phase-locked loops (ADPLL) with high frequency wide bands. According to the two-stage time-to-digital converter of the invention, the combination of semi custom and full custom is adopted, and two-stage time-to-digital converter comprises a first-stage quantizing structure, a time deviation selection circuit, a second-stage quantizing structure and a decoding circuit, wherein the first-stage quantizing structure adopts a buffer delay chain for coarse quantization; the time deviation selection circuit is composed of a selective signal generator, a delay chain and a multiplexer; the second-stage quantizing structure adopts a Vernier delay chain using a buffer as a basic unit to carry out fine quantization, and a duplication chain comprising a first-stage buffer chain simultaneously multiplexes the Vernier delay chain for measurement of a resolution ratio; the decoding circuit corresponds to a quantization scheme to realize transformation from pseudo thermometer codes to binary codes; the selective signal generator and the decoding circuit are realized by Verilog semi-custom, and the rest are realized by full-custom. The two-stage time-to-digital converter of the invention can be applied to ADPLL with the high frequency wide bands so as to realize time-to-digital conversion with high resolution and linearity.
Owner:FUDAN UNIV

Three-segment time-to-digital conversion circuit based on phase-locked loop

The invention discloses a three-segment time-to-digital conversion circuit based on a phase-locked loop. Accurate counting clocks of a plurality of different frequencies and a plurality of uniform split phases are provided for a time-to-digital converter (TDC) through the phase-locked loop, so that accurate measurement of measured time by the TDC is ensured; the phase-locked loop is a three-order type-2 phase-locked loop, and comprises a phase frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, a frequency divider and an auxiliary state detection circuit; the TDC is a three-segment TDC including a high segment, a middle segment and a low segment; and the high segment of the TDC is provided with a 7-bit linear shift register. According to the three-segment time-to-digital conversion circuit, the phase-locked loop has the advantage of providing stable clocks of different frequencies and uniform phases, so that rough counting and fine quantitation and further fine quantitation of a measured time amount are finished; wide-range measurement is finished; and the measuring accuracy is ensured at the same time. Meanwhile, initial-phase time is measured at a same resolution, so that initial-phase time errors are eliminated, and the resolution and the measuring accuracy are kept constant at the same time.
Owner:SOUTHEAST UNIV

Wireless low-jitter transmission method for digital asynchronous pulse

The invention discloses a wireless low-jitter transmission method for a digital asynchronous pulse, which belongs to the wireless pulse transmission and communication field. The wireless low-jitter transmission method for the digital asynchronous pulse is especially suitable for the wireless low-jitter transmission of radar pulse. Pulse shaping is carried out on a transmitting end; the pulse is subjected to rough sampling and fine sampling by utilizing a reference clock and a time-to-digital conversion circuit; the digitalized time information obtained by sampling is coded and modulated; on a receiving end, the steps of demodulating and decoding are finished by utilizing a synchronized reference clock; rough sampling information and fine sampling information are recovered; according to the rough sampling information and the fine sampling information, a clock period corresponding to a pulse signal to be recovered is determined; the rising edge of the corresponding clock period is delayed for a certain period of time by utilizing a programmable delay circuit to obtain a pulse rising edge to be recovered; the pulse rising edge is widened and judged; and finally, a low-jitter pulse signal is output. According to the wireless low-jitter transmission method for the digital asynchronous pulse, the transmitting end pulse can be favorable recovered, the wireless low-jitter transmission method has a low requirement on a clock in a system, and the main circuit component is realized by adopting an FPGA (field programmable gate array) or ASIC (application specific integrated circuit), thereby being low in designing and debugging difficulty.
Owner:NO 54 INST OF CHINA ELECTRONICS SCI & TECH GRP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products