Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2178 results about "Number generator" patented technology

Method for generating customer one-time unique purchase order numbers

Multiple secure transactions are provided through use of a method that uses customer one-time unique purchase order numbers (“Coupons”) generated by an algorithm that uses a permutated user key and a user insertion key as input variables. A user key (such as a Personal Identification Number, or “PIN”) is combined with a permutation variable that is correlated with a customer sequence number to create the permutated user key. A random number generator is used to generate the user insertion key correlated with the customer sequence number. The algorithm can insert the permutated user key into a user account number through use of the user insertion key. A Coupon is validated by confirming that it is contained in a set of money source Coupons generated by a money source using the user key and a random number generator that is synchronized with the random number used to generate Coupons. Once a Coupon is validated, the matching money source Coupon and all earlier generated money source Coupons are deleted from the set, and a new set is generated. If a preselected number of Coupons are not validated for a chosen entity, an invalid user account number will be set. Coupons can be used for credit card or bank card transactions, and they can be generated without changing fixed digits of traditional twenty digit account numbers.
Owner:PRIVASYS

Method for generating customer secure card numbers

A method for providing secure transactions generates a Secure Card Number (“SCN”) for a first entity that is transferred with a first entity identifier to a second entity and then to a money source that verifies that the transaction is valid by use of the first entity identifier and the SCN. The SCN includes a 0Transaction Information Block (“TIB”), a Counter Block, and an encrypted Personal Identification Number (“PIN”) Block. The SCN is transferred to the money source in an account number or a non-account data field. The money source can use the TIB to determine whether the SCN should be used once or multiple times or to identify one of several physical devices, all of which are issued to the first entity, used to generate the SCN. The money source validates the SCN by duplicating the encryption process used to create an encrypted PIN Block and comparing the result to the encrypted PIN Block received with the transaction. A Triple Data Encryption Standard algorithm encrypts a PIN Block generated from a PIN, a Sequence Insertion Number (“SIN”) and a known starting value. The SIN can be a combination of three seed values and a random value generated by a Pseudo Random Number Generator (“PRNG”) initialized with the seed values. A Counter value is associated with the Counter Block and the seed values.
Owner:PRIVASYS

Method and system for communicating with and tracking RFID transponders

An RFID system and method for communicating between a host computer, one or more interrogators connected to the host computer, and a large body of transponders distributed within an area covered by the interrogators. Each transponder originally has a common identification code, and upon initialization by the host computer internally generates a unique identification code based upon an internally generated random number. The host, through the interrogators, reads each of the identification codes associated with each transponder by iteratively transmitting a read identification code command along with a controlled variable. Each transponder compares the received controlled variable to an internally generated random number, and selectively transmits its identification code based upon the outcome of this comparison. After the completion of each read identification code iteration, the host adjusts the controlled variable based upon the responses received in the previous iteration. Preferably, communications between the interrogators and the transponders are DSSS signals in TDMA format, and the transponders use the random number generator to assign a time slot for transmission of their response. Each interrogator includes an antenna system utilizing a switch matrix to connect multiple antennas having different polarizations, which ensures that all transponders within the range of the interrogator receive the signals from the interrogator. In a further aspect, the interrogators are arranged in groups, each group in nearest neighbor format, to reduce the time for reading the transponders and the emissions generated when more than one interrogator is active at the same time.
Owner:TERRESTRIAL COMMS LLC

Agile network protocol for secure communications with assured system availability

A plurality of computer nodes communicates using seemingly random IP source and destination addresses and (optionally) a seemingly random discriminator field. Data packets matching criteria defined by a moving window of valid addresses are accepted for further processing, while those that do not meet the criteria are rejected. In addition to “hopping” of IP addresses and discriminator fields, hardware addresses such as Media Access Control addresses can be hopped. The hopped addresses are generated by random number generators having non-repeating sequence lengths that are easily determined a-priori, which can quickly jump ahead in sequence by an arbitrary number of random steps and which have the property that future random numbers are difficult to guess without knowing the random number generator's parameters. Synchronization techniques can be used to re-establish synchronization between sending and receiving-nodes. These techniques include a self-synchronization technique in which a sync field is transmitted as part of each packet, and a “checkpoint” scheme by which transmitting and receiving nodes can advance to a known point in their hopping schemes. A fast-packet reject technique based on the use of presence vectors is also described. A distributed transmission path embodiment incorporates randomly selected physical transmission paths.
Owner:VIRNETX

Systems and Methods for Portable Audio Synthesis

InactiveUS20080156178A1Create efficientlyEfficiently stored and/processedGearworksMusical toysAudio synthesisDisplay device
Systems and methods for creating, modifying, interacting with and playing music are provided, particularly systems and methods employing a top-down process, where the user is provided with a musical composition that may be modified and interacted with and played and/or stored (for later play). The system preferably is provided in a handheld form factor, and a graphical display is provided to display status information, graphical representations of musical lanes or components which preferably vary in shape as musical parameters and the like are changed for particular instruments or musical components such as a microphone input or audio samples. An interactive auto-composition process preferably is utilized that employs musical rules and preferably a pseudo random number generator, which may also incorporate randomness introduced by timing of user input or the like, the user may then quickly begin creating desirable music in accordance with one or a variety of musical styles, with the user modifying the auto-composed (or previously created) musical composition, either for a real time performance and/or for storing and subsequent playback. In addition, an analysis process flow is described for using pre-existing music as input(s) to an algorithm to derive music rules that may be used as part of a music style in a subsequent auto-composition process. In addition, the present invention makes use of node-based music generation as part of a system and method to broadcast and receive music data files, which are then used to generate and play music. By incorporating the music generation process into a node-subscriber unit, the bandwidth-intensive systems of conventional techniques can be avoided. Consequently, the bandwidth can preferably be also used of additional features such as node-to-node and node to base music data transmission. The present invention is characterized by the broadcast of relatively small data files that contain various parameters sufficient to describe the music to the node/subscriber music generator. In addition, problems associated with audio synthesis in a portable environment are addressed in the present invention by providing systems and methods for performing audio synthesis in a manner that simplifies design requirements and/or minimizes cost, while still providing quality audio synthesis features targeted for a portable system (e.g., portable telephone). In addition, problems associated with the tradeoff between overall sound quality and memory requirements in a MIDI sound bank are addressed in the present invention by providing systems and methods for a reduced memory size footprint MIDI sound bank.
Owner:MEDIALAB SOLUTIONS

Location authentication of requests to a web server system linked to a physical entity

A system for authenticating the location of a client system accessing a web server system associated with a physical entity includes a location beacon adjacent to the physical entity. The location beacon transmits a first beacon signal containing a web address of the web server system and a token that expires within a predetermined time period. A beacon receiver in the client system receives the first beacon signal, and sends a first request having the token and a key generated by a random number generator in the client system to the web server system. A location authentication module in the web server system retrieves the key from the first request if the token has not expired. A location authentication beacon adjacent to the physical entity transmits a second beacon signal containing the web address and a customized token encrypted using the key. The beacon receiver receives the second beacon signal and uses the key to decrypt the customized token. A web browser in the client system sends a second request having the web address and the customized token to the web server system if the beacon receiver can decrypt the customized token with the key. A method of authenticating locations of clients accessing a web server system is also described.
Owner:HEWLETT PACKARD DEV CO LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products