Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

182 results about "Modular architecture" patented technology

Data aggregation server for managing a multi-dimensional database and database management system having data aggregation server integrated therein

Improved method of and apparatus for aggregating data elements in multidimensional databases (MDDB). In one aspect of the present invention, the apparatus is realized in the form of a high-performance stand-alone (i.e. external) aggregation server which can be plugged-into conventional OLAP systems to achieve significant improments in system performance. In accordance with the principles of the present invention, the stand-alone aggregation server contains a scalable MDDB and a high-performance aggregation engine that are integrated into the modular architecture of the aggregation server. The stand-alone aggregation server of the present invention can uniformly distribute data elements among a plurality of processors, for balanced loading and processing, and therefore is highly scalable. The stand-alone aggregation server of the present invention can be used to realize (i) an improved MDDB for supporting on-line analytical processing (OLAP) operations, (ii) an improved Internet URL Directory for supporting on-line information searching operations by Web-enabled client machines, as well as (iii) diverse types of MDDB-based systems for supporting real-time control of processes in response to complex states of information reflected in the MDDB. In another aspect of the present invention, the apparatus is integrated within a database management system (DBMS). The improved DBMS can be used to realize achieving a significant increase in system performance (e.g. deceased access/search time), user flexibility and ease of use. The improved DBMS system of the present invention can be used to realize an improved Data Warehouse for supporting on-line analytical processing (OLAP) operations or to realize an improved informational database system, operational database system, or the like.
Owner:YANICKLO TECH LIABILITY +1

Appliance with refuelable and rechargeable metal-air fuel cell battery power supply unit integrated therein

A device / system having an integrated refuelable and rechargable metal-air FCB based power supply unit for generating and providing electrical power to at least one electrical-energy-consuming load device disposed therein. An external power source is used to recharge the metal-air FCB subsystems embodied therein. A control subsystem automatically transitions between discharging mode (wherein at least one metal-air FCB subsystem supplies electrical power to the electrical power-consuming load device) and a recharging mode (wherein the external power source is electrically coupled to at least one metal-air FCB subsystem to thereby recharge the metal-air FCB subsystem(s). The metal-air FCB subsystem(s) are refueled by manually loading and unloading metal-fuel from the metal-air FCB subsystem(s). Preferably, electrical power provided to the at least one electrical power-consuming load device is supplied solely by electrical power generated by discharging metal-fuel in the metal-air fuel cell battery subsystem(s). In addition, the metal-air FCB subsystem(s) preferably has a modular architecture that enable flexible and user-friendly operations in loading of metal-fuel, unloading of consumed metal-fuel, replacement of the ionic-conducting medium, and replacement of the cathode.
Owner:FARIS SADEG M +1

Cartesian robot cluster tool architecture

A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms, to prevent device yield and substrate scrap problems that can affect the cost of ownership of the cluster tool. The flexible and modular architecture allows the user to configure the number of processing chambers, processing racks, and processing robots required to meet the throughput needs of the user.
Owner:APPLIED MATERIALS INC

Refuelable and rechargeable metal-air fuel cell battery power supply unit for integration into an appliance

A refuelable and rechargable metal-air FCB based power supply unit for integration into a device/system for generating and providing electrical power to at least one electrical-energy-consuming load device disposed therein. An external power source is used to recharge the metal-air FCB subsystems embodied therein. A control subsystem automatically transitions between discharging mode (wherein at least one metal-air FCB subsystem supplies electrical power to the electrical power-consuming load device) and a recharging mode (wherein the external power source is electrically coupled to at least one metal-air FCB subsystem to thereby recharge the metal-air FCB subsystem(s). The metal-air FCB subsystem(s) are refueled by manually loading and unloading metal-fuel from the metal-air FCB subsystem(s). Preferably, electrical power provided to the at least one electrical power-consuming load device is supplied solely by electrical power generated by discharging metal-fuel in the metal-air fuel cell battery subsystem(s). In addition, the metal-air FCB subsystem(s) preferably has a modular architecture that enable flexible and user-friendly operations in loading of metal-fuel, unloading of consumed metal-fuel, replacement of the ionic-conducting medium, and replacement of the cathode.
Owner:REVEO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products