Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5273results about How to "Accurate analysis" patented technology

A System for analyzing applications in order to find security and quality issues

The present invention relates to field of application and more specifically to analysis of applications for determining security and quality issues. The present invention describes an application analysis system providing a platform for analyzing applications which is useful in finding security and quality issues in an application. In particular, the present invention is composed of an advanced fusion analyzer which gains an understanding of the application behavior by using a multi-way coordination and orchestration across components used in the present invention to build an continuously refine a model representing knowledge and behavior of the application as a large network of objects across different dimensions and using reasoning and learning logic on this model along with information and events received from the components to both refine and model further as well as drive the components further by sending information and events to them and again using the information and events received as a result to further trigger the entire process until the system stabilizes. The present invention is useful in analysis of internet/intranet based web applications, desktop applications, mobile applications and also embedded systems as well as for hardware, equipment and machines controlled by software.
Owner:IAPPSECURE SOLUTIONS PVT

Liquid analysis cartridge

InactiveUS6852284B1Rapidly and effectively reconstituteEasy to reorganizeFlow mixersTransportation and packagingShell moldingDiluent
The present invention provides an apparatus and method for storing a particle-containing liquid. The storage apparatus comprises a microfluidic convoluted flow channel having a plurality of article capture regions. The storage channel is preferably an isotropic spatially periodic channel. Sedimented particles can be resuspended following storage. This invention further provides a microfluidic analysis cartridge having a convoluted storage channel therein. The sample analysis can use optical, electrical, pressure sensitive, or flow sensitive detection. A plurality of analysis channels can be included in a single cartridge. The analysis channels can be joined to reagent inlets for diluents, indicators or lysing agents. A mixing channel can be positioned between the reagent inlet and the analysis region to allow mixing and reaction of the reagent. The cartridge can include additional valves and pumps for flow management. The analysis cartridge can be a self-contained disposable cartridge having an integral waste storage container. This invention further provides a sheath flow assembly. The sheath flow assembly includes a sample channel and first and second sheath fluid channels positioned on either side of and converging with the sample channel. The assembly also includes upper and lower sheath fluid chambers positioned above and below and converging with the sample channel. The flow cartridges of this invention can be formed by molding, machining or etching. In a preferred embodiment they are laminated. This invention further provides a method of fabricating a laminated microfluidic flow device. In the method, flow elements are formed in rigid sheets and abutting surfaces of the sheets are bonded together.
Owner:UNIV OF WASHINGTON

Intelligent data retrieval system

ActiveUS20070136264A1Fast and robust wireless transmissionMinimize data transmission costDigital data information retrievalDigital data processing detailsData informationPaper document
An electronic assistant which dispatches tasks on the user's behalf and according to his or her preferences is disclosed. The assistant has an enactor for processing data received from a sensor and for changing its environment via an actuator. The enactor receives instruction from a predictor/goal generator, which in turn is connected to a general knowledge warehouse. Additionally, the warehouse and the predictor/goal generator are connected to a plurality of specialist knowledge modules, including a scheduler, an information locator, a communicator, a form filler, a trainer, a legal expert, a medical expert and other experts. The electronic assistant provides an interface which frees the user from learning complex search languages and allows some functions to be automatically performed. A variety of machine learning processes allow the assistant to learn the user's styles, techniques, preferences and interests. After learning about the user's interests in particular types of information, the assistant guides the user through the process of on-line information source selection, utilization, and interaction management via the information locator. The information locator generates a query conforming to the user characteristics for retrieving data of interest. The information locator next submits the query to one or more information sources. Upon receipt of results of the submitted query, the information locator communicates the results to the user, and updates the knowledge warehouse with responses from the user to the results. The assistant supports the ability to refine the query and to manage the costs associated with the search. Further, the assistant automatically incorporates data relating to changes in the query interface and other relevant characteristics of the information sources so that search command sequences can be altered without user interaction. The search configuration of each search carried out by the user is saved in a database. The data maintained in the database includes keywords and concepts for search, interval between subsequent searches, deadline for the search, the number of documents to acquire from each engine, and domain over which to do the search, including the preferred set of search engines or the preferred set of news groups.
Owner:CHEMTRON RES

Tooth brushing pattern analyzing/modifying device, method and system for interactively modifying tooth brushing behavior

Disclosed are a toothbrushing pattern analyzing/correcting device, a toothbrushing pattern analyzing/correcting method, a method and a system for interactively correcting toothbrushing behavior. The toothbrushing pattern analyzing/correcting device of the present invention includes: a body part formed in the same direction as a toothbrush surface; a sensing unit having a sensor with at least one or more axes for sensing a user's toothbrushing motion and a sensor with one or more axes for sensing two or more toothbrushing positions; and a controller for operating signals input from the sensing unit to classify a user's toothbrushing motion into at least two or more patterns and at least two or more toothbrushing parts. Further, the toothbrushing pattern analyzing/correcting method includes the steps of: detecting the start of a user's toothbrushing; displaying a guiding screen in response to the start of a user's toothbrushing; detecting a user's toothbrushing pattern; analyzing the user's detected toothbrushing pattern; and providing a toothbrushing correction screen with the intention of increasing compliance in accordance with the analyzed result. Accordingly, toothbrushing behavior correction compliance can be further enhanced with a method of interactively correcting a user's toothbrushing behavior through multimedia image substances in real time, and more systematic management and health consultation are possible by building a database of information of the user's toothbrushing behavior.
Owner:XIU SOLUTIONS

Oversampling pulse oximeter

An oversampling pulse oximeter includes an analog to digital converter with a sampling rate sufficient to take multiple samples per source cycle. In one embodiment, a pulse oximeter (100) includes two more more light sources (102) driven by light source drives (104) in response to drive signals from a digital signal processing unit (116). The source drives (104) may drive the sources (102) to produce a frequency division multiplex signal. The optical signals transmitted by the light sources (102) are transmitted through a patient's appendage (103) and impinge on a detector (106). The detector (106) provides an analog current signal representative of the received optical signals. An amplifier circuit (110) converts the analog current signal to an analog voltage signal in addition to performing a number of other functions. The amplifier circuit (110) outputs an analog voltage signal which is representative of the optical signals from the sources (102). This analog voltage signal is received by a fast A/D converter (112) which samples the analog voltage signal to generate a digital voltage signal which can be processed by the digital signal processing unit (116). The fast A/D converter (112) operates at a rate sufficient to take multiple samples per source cycle and may have a sampling frequency, for example, of over 41 kHz. The digital signal processing unit (116) implements software for averaging the samples over a source cycle for improved measurement consistency, improved signal to noise ratio and reduced A/D converter word length.
Owner:DATEX OHMEDA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products