Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

805 results about "Thermal damage" patented technology

Selective Accumulation of Energy With or Without Knowledge of Tissue Topography

ActiveUS20100125268A1Avoids significant thermal damageSignificant thermal damageUltrasound therapyChiropractic devicesPulse energyPulse characteristics
Methods and systems for heating a body tissue region adjacent a body lumen with diseased and healthy portions using selective accumulation of energy in the artery tissue with or without knowledge of tissue topography. The method includes positioning an energy delivery portion of a catheter body within the lumen adjacent the body tissue region to be heated, determining a pulse characteristic in response to a thermal property of a first tissue type and applying pulsed energy with the pulse characteristic from the energy delivery portion so as to therapeutically treat the second tissue type within the body tissue region by drawing heat from the first tissue type at a rate that avoids significant thermal damage to the first tissue type while building-up heat in the second tissue type. The system includes an elongate flexible catheter body having a proximal end and a distal end with an axis therebetween, an energy delivery portion proximate the distal end, an energy source coupled to the energy delivery portion and a processor coupled to the energy source, the processor configured to control a pulse characteristic of pulsed energy transmitted from the energy source to the energy delivery portion so as to therapeutically treat the second tissue type within the body tissue region by drawing heat from the first tissue type at a rate that avoids significant thermal damage to the first tissue type while building-up heat in the second tissue type.
Owner:BOSTON SCI SCIMED INC

Method and apparatus for creation of drug delivery and/or stimulation pockets in myocardium

An apparatus and method for creating drug-filled pockets within muscle tissue, such as myocardium of the heart for increasing angiogenesis. More particularly, the apparatus has an excising assembly with a dilator tip for penetrating and advancing through the surface and body of a muscle or organ, such as the heart. Preferably, the dilator tip has a low level laser optical fiber emission to ease the passage of the excising assembly and provide thermal damage which also stimulates angiogenesis. More preferably, the dilator tip also disperses a pharmacologically active substance as the apparatus is passed through the tissue and / or creates pockets. The excising assembly is connected to a hand-held control device from which the operator pushes a switch to activate a punching mechanism within the excising assembly. The punching mechanism cuts a discrete piece of muscle tissue and traps it within the excising assembly leaving a pocket in the remaining muscle tissue. The excising assembly may also optionally release a bolus of the pharmacologically active substance into the pocket so created. Most preferably, there is a timing mechanism to measure the contraction of the heart, and the timing mechanism is synchronized with the operator's switch on the hand-held device to ensure that the punching occurs at maximum contraction of systole. A measurement guide determines how much excised tissue is trapped in the reservoir of the excising assembly. At a threshold level of filling, the surgeon will remove the excising assembly from the hand-held control device and open the punching mechanism for release of tissue. More preferably, the threshold level of filling will automatically turn off the switch to the punching mechanism to indicate to the surgeon the need to empty the excising assembly of tissue.
Owner:ECLIPSE SURGICAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products