Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

14532 results about "Hydrogen peroxide" patented technology

Hydrogen peroxide is a chemical compound with the formula H₂O₂. In its pure form, it is a very pale blue, clear liquid, slightly more viscous than water. Hydrogen peroxide is the simplest peroxide (a compound with an oxygen–oxygen single bond). It is used as an oxidizer, bleaching agent, and antiseptic. Concentrated hydrogen peroxide, or "high-test peroxide", is a reactive oxygen species and has been used as a propellant in rocketry. Its chemistry is dominated by the nature of its unstable peroxide bond.

Membrane suitable for use in an analyte sensor, analyte sensor, and associated method

A multifunctional membrane is provided. The multifunctional membrane is suitable for use in an analyte sensor. In a particular application, the multifunctional membrane may be used in connection with an amperometric biosensor, such as a transcutaneous amperometric biosensor. Some functions of the membrane are associated with properties of membrane itself, which is comprised of crosslinked polymers containing heterocyclic nitrogen groups. For example, the membrane, by virtue of its polymeric composition, may regulate the flux of an analyte to a sensor. Such regulation generally improves the kinetic performance of the sensor over a broad range of analyte concentration. Other functions of the membrane are associated with functional components, such as a superoxide-dismutating/catalase catalyst, either in the form of an enzyme or an enzyme mimic, that can be bound to the scaffold provided by the membrane. The effect of any such enzyme or enzyme mimic is to lower the concentration of a metabolite, such as superoxide and/or hydrogen peroxide, in the immediate vicinity of the sensing layer of the biosensor. Lowering the concentrations of such metabolites, which are generally deleterious to the function of the sensor, generally protects or enhances biosensor integrity and performance. The membrane is thus an important tool for use in connection with analyte sensors, amperometric sensors, biosensors, and particularly, transcutaneous biosensors. A membrane-covered sensor and a method for making same are also provided.

Sterilization method and apparatus

A method of sterilizing an article by sequentially exposing the article to hydrogen peroxide and ozone is disclosed. The article is exposed under vacuum first to an evaporated aqueous solution of hydrogen peroxide and subsequently to an ozone containing gas. The exposure is carried out without reducing the water vapor content of the sterilization atmosphere, the water vapor content being derived from the aqueous solvent of the hydrogen peroxide solution and from the decomposition of the hydrogen peroxide into water and oxygen. The complete sterilization process is carried out while the chamber remains sealed and without removal of any component of the sterilization atmosphere. For this purpose, the chamber is initially evacuated to a first vacuum pressure sufficient to cause evaporation of the aqueous hydrogen peroxide at the temperature of the chamber atmosphere. The chamber is then sealed for the remainder of the sterilization process and during all sterilant injection cycles. Keeping the chamber sealed and maintaining the hydrogen peroxide and its decomposition products in the chamber for the subsequent ozone sterilization step results in a synergistic increase in the sterilization efficiency and allows for the use of much lower sterilant amounts and sterilization cycle times than would be expected from using hydrogen peroxide and ozone in combination.

Method for preparing nickel and cobalt doped lithium manganate by using waste and old lithium ionic cell as raw material

InactiveCN101450815ASimultaneous recyclingShort processManganates/permanganatesManganateManganese oxide
The invention discloses a method for preparing lithium nickel cobalt manganese oxide by taking a waste lithium ion battery as a raw material. The method is mainly characterized in that a waste lithium ion battery taking the lithium nickel cobalt manganese oxide, lithium nickel cobalt oxide and so on as a battery positive material is selected as the raw material and is pretreated through disassembly, separation, crushing, screening and so on, and then processes such as adhesive removal at high temperature and aluminum removal by sodium hydroxide are adopted to obtain an inactivated positive material containing nickel, cobalt and manganese; then a sulfuric acid and hydrogen peroxide system is adopted to leach, and P204 is adopted to remove impurities by extraction to obtain pure nickel, cobalt and manganese solution, and proper manganese sulfate, nickel sulfate or cobalt sulfate is blended to ensure that the mol ratio of nickel, cobalt and manganese elements in the solution is 1: 1: 1; and then ammonium carbonate is adopted to adjust the pH value to form a nickel cobalt manganese carbonate precursor, and then a proper amount of lithium carbonate is blended for high temperature sintering to synthesize a lithium nickel cobalt manganese oxide battery material. The first discharge capacity of the material is 150 mAh/g, the discharge capacity is still kept more than 130mAh/g after the circulation for 30 times, and the material has good electrochemical performance.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products