Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

813 results about "Cyclic peptide" patented technology

Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chain, for example in bacitracin; the carboxyl end and a side chain, for example in colistin; or two side chains or more complicated arrangements, for example in amanitin. Many cyclic peptides have been discovered in nature and many others have been synthesized in the laboratory. Their length ranges from just two amino acid residues to hundreds. In nature they are frequently antimicrobial or toxic; in medicine they have various applications, for example as antibiotics and immunosuppressive agents. Thin-Layer Chromatography (TLC) is a convenient method to detect cyclic peptides in crude extract from bio-mass.

Synthesis of cyclic peptides

This invention relates to methods for preparing cyclic peptides and peptidomimetic compounds in solution and bound to solid supports, and to cyclic peptide or peptidomimetic libraries for use in drug screening programs. In particular, the invention relates to a generic strategy for synthesis of cyclic peptides or peptidomimetics that enables the efficient synthesis under mild conditions of a wide variety of desired compounds. Two approaches were evaluated for their improvements in solution and solid phase synthesis of small cyclic peptides: positioning reversible N-amide substituents in the sequence; and applying native ligation chemistry in an intramolecular sense. Systematic investigation of the effects of preorganising peptides prior to cyclisation by using peptide cyclisation auxiliaries, and developing new linkers and peptide cyclisation auxiliaries to aid cyclic peptide synthesis gives surprising improvements in both yields and purity of products compared to the prior art methods. The combination of these technologies provides a powerful generic approach for the solution and solid phase synthesis of small cyclic peptides. The ring contraction and N-amide substitution technology of the invention provide improved methods for the synthesis of cyclic peptides and peptidomimetics. When used in conjunction with linker strategies, this combination provides solid-phase avenues to cyclic peptides and peptidomimetics.
Owner:QUEENSLAND THE UNIV OF

Preparation method and application of RGD-modified ultra-small magnetic iron oxide nanoparticles

The invention discloses a preparation method of RGD-modified ultra-small magnetic iron oxide nanoparticles. The preparation method comprises the following steps: preparing ultra-small magnetic iron oxide nanoparticles by taking ferric acetylacetonate as a reaction raw material and a precursor, taking oleylamine as a surfactant and a reducing agent and taking dibenzyl ether as a solvent; replacing oleylamine molecules wrapped on the surfaces of the nanoparticles by utilizing dopamine-modified HOOC-PEG-COOH to realize PEG-modification of the surfaces of the nanoparticles; and finally, chemically coupling RGD cyclic peptide by virtue of free carboxyl at the tail end of the PEG to obtain the RGD-modified ultra-small magnetic iron oxide nanoparticles. The method of synthesizing the ultra-small magnetic iron oxide nanoparticles has the characteristics of a simple process, a high raw material conversion ratio, strong repeatability and the like. The synthesized magnetic iron oxide nanoparticles have the characteristics of a regular morphology, an ultra-small dimension, good stability, good monodispersity, high biocompatibility, and tumor specific targeting, and the like, and can be used as a T1-weighted imaging high-performance magnetic resonance imaging contrast agent with a tumor active targeting function.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products