Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

453 results about "Iron oxide nanoparticles" patented technology

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are magnetite (Fe₃O₄) and its oxidized form maghemite (γ-Fe₂O₃). They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields (although Co and Ni are also highly magnetic materials, they are toxic and easily oxidized).

Nanometer composite silicon brick and preparation method thereof

The invention relates to a nano-sized composite silica brick and a production method thereof. The invention is characterized in that: raw materials and binder of the silica brick are as follows: silica granules and fine powders, waste silica brick granules, calcium carbonate nanoparticles, iron oxide nanoparticles, silicon dioxide nanoparticles, fluorite powders, lime and sulfite pulp wastes. The production method is based on the existing production process of the silica brick, and introduces compound nanopowders in optimal proportions in the production process of the silica brick after high-efficiency dispersion, to produce nano-sized composite silica bricks. With the addition of nanopowders, the performance of silica brick is significantly improved, and manifested as follows: 1) the particle size fraction is more reasonable, the accumulation is compact and the texture is uniform; 2) the slurry has good plasticity and moldability and the production efficiency is improved; 3) the burning temperature is decreased to 20 DEG C, thus realizing energy conservation and discharge reduction; 4) the tridymite is superior in crystallization conversion and has low content of quartz residues; 5) the number of closed pores is increased, the number of opened pores are reduced, the porosity is reduced, and the strength and refractoriness under load are increased; and 6) the final product has good appearance, smooth end surface and good bonding property, and the rate of qualified products is increased.
Owner:ZHENGZHOU UNIV +1

Porous graphene supported carbon coated iron oxide nanoparticle composite material and preparation method thereof

The invention belongs to the technical field of lithium ion battery materials, and specifically relates to a porous graphene supported carbon coated iron oxide nanoparticle composite material and a preparation method thereof. The porous graphene supported carbon coated iron oxide nanoparticle composite material is prepared from the following steps: (1) directly preparing graphene oxide with graphite ore as a raw material by using a closed oxidation method; (2) preparing a ferric salt aqueous solution, wherein the specific steps are as follows: weighing and dissolving cetyl trimethyl ammonium bromide in water to obtain a clear cetyl trimethyl ammonium bromide solution, adding a ferric salt, stirring until the ferric salt is completely dissolved, and adding an ammonia solution to prepare the ferric salt aqueous solution; and (3) stirring and ultrasonic mixing the graphene oxide solution with the ferric salt aqueous solution, placing the mixture in a water bath kettle, reacting at 80-100 DEG C for 0.5-5h, stewing at a room temperature, removing clear liquid, freeze drying a head product, and carrying out heat treatment on the head product in an inert atmosphere to obtain the porous graphene supported carbon coated iron oxide nanoparticle composite material.
Owner:SHANXI UNIV

Preparation method and application of RGD-modified ultra-small magnetic iron oxide nanoparticles

The invention discloses a preparation method of RGD-modified ultra-small magnetic iron oxide nanoparticles. The preparation method comprises the following steps: preparing ultra-small magnetic iron oxide nanoparticles by taking ferric acetylacetonate as a reaction raw material and a precursor, taking oleylamine as a surfactant and a reducing agent and taking dibenzyl ether as a solvent; replacing oleylamine molecules wrapped on the surfaces of the nanoparticles by utilizing dopamine-modified HOOC-PEG-COOH to realize PEG-modification of the surfaces of the nanoparticles; and finally, chemically coupling RGD cyclic peptide by virtue of free carboxyl at the tail end of the PEG to obtain the RGD-modified ultra-small magnetic iron oxide nanoparticles. The method of synthesizing the ultra-small magnetic iron oxide nanoparticles has the characteristics of a simple process, a high raw material conversion ratio, strong repeatability and the like. The synthesized magnetic iron oxide nanoparticles have the characteristics of a regular morphology, an ultra-small dimension, good stability, good monodispersity, high biocompatibility, and tumor specific targeting, and the like, and can be used as a T1-weighted imaging high-performance magnetic resonance imaging contrast agent with a tumor active targeting function.
Owner:SOUTHEAST UNIV

Composite nanometer material with core-shell structure, preparation method and application of composite nanometer material

The invention provides a magnetic iron oxide-silicon dioxide-phenolic resin polymer composite nanometer material with a core-shell structure, a preparation method and application of the composite nanometer material. The material has a regular spherical morphology; an inner core is magnetic iron oxide nano particles; an inner shell layer is silicon dioxide; an outer shell layer is a phenolic resin polymer; the thicknesses of the inner shell layer and the outer shell layer can be modulated; the outer shell layer can be transformed into carbon after high-temperature treatment in nitrogen; and the overall morphology and the structure of the material are kept invariable. The material is prepared by the following steps: introducing magnetic iron oxide nano particles into a mixed solution of ethyl alcohol/deionized water/ammonium hydroxide; and adding a silicon source and a carbon source to carry out hydrolysis and polymerization reaction. The magnetic iron oxide-silicon dioxide-phenolic resin polymer composite nanometer material has the effects and advantages that the provided core-shell material is good in stability and simple in preparation process, and can be used for adsorbing and separating a nano noble-metal catalyst carrier.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method of silica-coated iron oxide nano-core-shell structural material

A preparation method of silica-coated iron oxide nano-core-shell structural material includes: dissolving molysite, acetic acid and polyvinylpyrrolidone in ethanol, and mixing well; moving the solution into a polytetrafluoroethylene reactor, allowing the solution to react at the heating temperature of 160-220 DEG C for 3-48 hours and under the mixing speed of 10-100rpm, and obtaining 0.1-8g/L iron oxide nanoparticle suspension; and adding the ethanol and deionized water into the suspension, allowing the volume ratio of the ethanol to water in the suspension system to be 0.5-10/1, adjusting pH value to be 7-12, allowing the mass ratio of tetraethoxysilane to iron oxide nanoparticles to be 1:1-40, slowly adding the tetraethoxysilane under mixing, allowing the mixture to react for 12-70 hours, performing filtering and drying, and calcining at 400-600 DEG C to obtain the silica-coated iron oxide nano-core-shell structural material, wherein the molar concentration of the molysite in solution is 0.01-0.1mol/L, the volume ratio of the acetic acid to the ethanol is 0.002-1:1, and the mass concentration of the polyvinylpyrrolidone in the solution is 1.5-20g/L. The preparation method has the advantages that synthetic process is simple, cost is low, operation is simple, and amplification and synthesis are easy.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Preparation method for controllable hollow mesoporous silicon dioxide nanospheres

The invention provides a preparation method for controllable hollow mesoporous silicon dioxide nanospheres. The method comprises the following steps of: dissolving iron salt, acetic acid and polyvinylpyrrolidone in ethanol, and uniformly stirring and mixing, then transferring the solution into a polytetrafluoroethylene reaction kettle, and reacting while heating to obtain an iron oxide nanoparticle suspension; adding ethanol, deionized water and cetyl trimethyl ammonium bromide into the iron oxide nanoparticle suspension, adding alkali to adjust the pH value to be 7-12, slowly adding tetraethoxysilane in a stirring condition so as to for 12-72 hours, filtering, drying, and roasting at 400-600 DEG C, thus obtaining a mesoporous silicon dioxide-coated iron oxide nanomaterial with a core-shell structure; and completely soaking the obtained mesoporous silicon dioxide-coated iron oxide nanomaterial with the core-shell structure in a prepared acidic etching solution, dissolving an iron oxide used as a hard template, and washing with the deionized water and the ethanol, filtering and drying, thus obtaining the hollow mesoporous silicon dioxide nanospheres. The preparation method for the controllable hollow mesoporous silicon dioxide nanospheres disclosed by the invention has the advantages of being simple in synthesis process, moderate in operation condition, cheap in raw material and easy in acquisition of raw materials, and easy in enlargement and synthesis.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products