Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

528 results about "Organelle" patented technology

In cell biology, an organelle is a specialized subunit within a cell that has a specific function. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bound organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bound organelles).

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

Systems, devices, and methods for biomass production

Systems, devices, and methods for releasing one or more cell components from a photosynthetic organism. A bioreactor system is operable for growing photosynthetic organisms. Some of the methods include contacting the photosynthetic organism with an energy-activatable sensitizer, and activating the energy-activatable sensitizer, thereby releasing a cellular component from at least one of, for example, a membrane structure, tubule, vesicle, cisterna, organelle, cell compartment, plastid, or mitochondrion, associated with the photosynthetic organisms.
Owner:BIONAVITAS

Full Karyotype Single Cell Chromosome Analysis

A full set of 24 chromosome-specific probes to analyze single cells or cell organelles to test for abnormalities is described. When used in an assay based on sequential hybridization, the full set is comprised of three subsets of chromosome-specific probes with each set comprised of 8 different probes. Also described are assays using a set of probes to analyze single cells and cellular organelles to accurately determine the number and type of targeted human chromosomes in various types of cells and cell organelles, such as tumor cells, interphase cells and first polar bodies biopsied from non-inseminated oocytes. Methods of selection or generation of suitable probes and hybridization protocols are described, as are preferred probes for frill set of 24 chromosome-specific probes to target all 24 human chromosomes are described in the Tables.
Owner:REPROGENETICS +1

Ultrasensitive sensor and rapid detection of analytes

The present invention relates to systems and methods for real time, rapid detection, identification, and enumeration of a wide variety of analytes, which include but are not limited to, cells (Eukarya, Eubacteria, Archaea), microorganisms, organelles, viruses, proteins (recombinant or natural proteins), nucleic acids, prionss, and any chemical, metabolites, or biological markers. The systems and methods, which include the laser / optic / electronic units, the analytic software, the assay methods and reagents, and the high throughput automation, are particularly adapted to detection, identification, and enumeration of pathogens and non-pathogens in contaminated foods, clinical samples, and environmental samples. Other microorganisms that can be detected with the present invention include clinical pathogens, protozoa and, viruses.
Owner:KIM LAB INC

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analyses. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analyses, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:FLUIDIGM CORP

Mesoporous silica nanoparticle-mediated delivery of DNA into arabidopsis root

Transient gene expression is a powerful tool for plant genomics studies. Recently, the use of nanomaterials has drawn great interest. Delivery with mesoporous silica nanoparticles (MSNs) has many advantages. We used surface-functionalized MSNs to deliver and express foreign DNA in Arabidopsis thaliana root cells without the aid of particle bombardment. Gene expression was detected in the epidermis layer and in the more inner cortex and endodermis root tissues. This method is superior to the conventional gene-gun method to deliver DNA, which delivers the gene to the epidermis layer only. Less DNA is needed for the MSN method. Our system is the first use of nanoparticles to deliver DNA to plants with good efficiency and without external aids. MSNs, with multifunctionality and the capability of cargo delivery to plant cells as we demonstrated, provide a versatile system for biomolecule delivery, organelle targeting, and even agriculture, such as improved nutrient uptake.
Owner:ACAD SINIC +1

Ensemble-decision aliquot ranking

Provided herein, among other aspects, are methods and apparatuses for ranking aliquots from a suspension containing bioparticles. In certain embodiments, the bioparticles may be cells, organelles, proteins, DNAs, debris of biological origin, microbeads coated with biological compounds, or viral particles. As such, the methods and apparatuses provided herein may be used to quantify rare cells such as circulating cancer cells, fetal cells and other rare cells present in bodily fluids for disease diagnosis, prognosis, or treatment.
Owner:UNIV OF WASHINGTON CENT FOR COMMERICIALIZATION

Microfluidic particle-analysis systems

The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or detection of particles, such as cells and / or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and / or analysis of particles, such as cells, viruses, organelles, beads, and / or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analysis. These mechanisms may enable controlled input, movement / positioning, retention / localization, treatment, measurement, release, and / or output of particles. Furthermore, these mechanisms may be combined in any suitable order and / or employed for any suitable number of times within a system. Accordingly, these combinations may allow particles to be sorted, cultured, mixed, treated, and / or assayed, among others, as single particles, mixed groups of particles, arrays of particles, heterogeneous particle sets, and / or homogeneous particle sets, among others, in series and / or in parallel. In addition, these combinations may enable microfluidic systems to be reused. Furthermore, these combinations may allow the response of particles to treatment to be measured on a shorter time scale than was previously possible. Therefore, systems of the invention may allow a broad range of cell and particle assays, such as drug screens, cell characterizations, research studies, and / or clinical analysis, among others, to be scaled down to microfluidic size. Such scaled-down assays may use less sample and reagent, may be less labor intensive, and / or may be more informative than comparable macrofluidic assays.
Owner:STANDARD BIOTOOLS INC

Methods and compositions for analyzing cellular components

Embodiments of the present invention relate to analyzing components of a cell. In some embodiments, the present invention relate to analyzing components of a single cell. In some embodiments, the methods and compositions relate to sequencing nucleic acids. In some embodiments, the methods and compositions relate to identifying and / or quantitating nucleic acid, proteins, organelles, and / or cellular metabolites.
Owner:ILLUMINA INC

Methods and compositions for delivering polynucleotides

Methods and compositions for delivering polynucleotides are provided. One embodiment provides a non-viral vector comprising a recombinant polynucleotide-binding protein comprising a protein transduction domain operably linked to a targeting signal. Methods for modifying the genome of non-nuclear organelles are also provided.
Owner:GENCIA

Methods for producing modified glycoproteins

Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways. This is achieved using a combination of engineering and / or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce “human-like” glycoproteins.
Owner:GLYCOFI

Surface-modified hydrophobically modified drug-carried chitosan polymer micelle and method for preparing same

Disclosed is a surfacely modified hydrophobic Chitosan oligosaccharide polymer drug-loaded colloidal cluster, obtained by grafting chitosan with a average molecular weight of 1.5kD-51kD and aliphatic acid of C10-C22, comprising based on hydrophobic modified Chitosan oligosaccharide polimer colloidal clusters, modifying amidogens or hydroxy groups of Chitosan oligosaccharide molecules on polimer surface with bi-functional small organic moleculers, forming chemical bond bridges between molecules on the surfaces of polymer colloidal clusters,to improve the instability of polymer colloidal cluster diluted, and to imorove the original loose structure of polimer colloidal cluster surfece to form a fine and close net-shaped structure, to decrease a sudden release of drugs, and to control drugs with slow release. The drug-loaded colloidal cluster provided is a nano-carrier with excellent organelle targeting, is applicated in life science field and pharmacy field.
Owner:ZHEJIANG UNIV

Multi-functional hybrid devices/structures using 3D printing

A bioelectronic device and method of making is disclosed. The device includes a scaffold formed via 3D printing. The device also includes a biologic and an electronic device formed via 3D printing, the biologic and electronic device being interweaved with or coupled to the scaffold. The electronic component may e.g., include at least one of hard conductors, soft conductors, insulators and semiconductors. The scaffold may be formed of at least one of synthetic polymers and natural biological polymers. The biologic may include at least one of animal cells, plant cells, cellular organelles, proteins and DNA (including RNA).
Owner:THE TRUSTEES FOR PRINCETON UNIV

System and method employing photokinetic techniques in cell biology imaging applications

A system and method employing photokinetic techniques in cell biology imaging applications are disclosed. Systems and methods of acquiring image data of an object may comprise: selectively inducing photoactivation of material at a site on the object; performing an optical axis integration scan; simultaneously executing a time delay integration scan sequence; and processing acquired image data in accordance with one or more desired analyses. Various methodologies and applications may include, inter alia, selective photobleaching of a site on the object, diffusion rate, velocity, and wave-front propagation analyses, multi-dimensional analyses of dispersion characteristics, biomolecular binding in cellular organelles, and photoactivation assisted systematic image segmentation for the study of cellular components.
Owner:GLOBAL LIFE SCI SOLUTIONS USA LLC

High level production of p-hydroxybenzoic acid in green plants

InactiveUS7361811B2Sugar derivativesAntibody mimetics/scaffoldsChorismate pyruvate lyaseChloroplast
The invention relates to high-level production of pHBA in green plants using a unique expression cassette. The latter comprises a chorismate pyruvate lyase (CPL) coding sequence operably linked to a suitable promoter capable of driving protein expression in higher plants. Additionally, the CPL cassette comprises a sequence encoding a chloroplast transit peptide, its natural cleavage site, and a small portion of the transit peptide donor protein fused to the N-terminus of CPL. The chloroplast targeting sequence targets the foreign protein to the chloroplast compartment and aids in its uptake into the organelle. The cleavage site is unique to the transit peptide, and cleavage of the chimeric protein encoded by the cassette at this site releases a novel polypeptide that has full enzyme activity, comprising the mature CPL enzyme and a small portion of the transit peptide donor.
Owner:UNIVERSITY OF NORTH TEXAS

Novel fluorochromes for organelle tracing and multi-color imaging

Provided are compounds, methods and kits for identifying in cells of interest organelles including nuclei and a wide variety of organelles other than nuclei (non-nuclear organelles), as well as cell regions or cell domains. These compounds and methods can be used with other conventional detection reagents for identifying the location or position or quantity of organelles and even for distinguishing between organelles in cells of interest.
Owner:ENOZ LIFE SCI INC BIOCHEM

Systems, methods and kits for characterizing phosphoproteomes

The invention provides systems, software, methods and kits for detecting and / or quantifying phosphorylatable polypeptides and / or acetylated polypeptides in complex mixtures, such as a lysate of a cell or cellular compartment (e.g., such as an organelle). The methods can be used in high throughput assays to profile phosphoproteomes and to correlate sites and amounts of phosphorylation with particular cell states.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method and therapeutic apparatus for normalizing function of sinus cilia using heat

InactiveUS20110208279A1Optimizes cilium performanceNormalizing function of the sinus ciliaTherapeutic coolingTherapeutic heatingNasal cavityThermal energy
The invention relates to a non-surgical and non-invasive drug-free therapeutic apparatus and method of using thermal energy-in-transfer to normalize poor sinus cilia function that can cause upper respiratory tract problems. The nasal and sinus cavity membranes have thousands of very small hair-like organelles called cilia. They are capable of rhythmic beating like oars, and they keep the sinus cavities clear of debris, pollutants and excessive drainage. This Mucociliary Clearance System performs best at a temperature slightly above the human body's normothermia. The method and therapeutic apparatus includes a mask with a pocket cavity that accommodates a heating element. The heating element can use heat from a disposable heating pack. When the apparatus is affixed to the human head with the heating element engaged, the warmth helps restore normal cilia function by bringing the temperature of the sinus cavities to a more optimal temperature which is above normothermia.
Owner:SANKER DANIEL ALLEN

High-speed WFOV (wide field of view) CARS (coherent anti-stokes raman scattering) microscope system and method

The invention relates to a high-speed WFOV (wide field of view) CARS (coherent anti-stokes raman scattering) microscope system and a high-speed WFOV CARS microscope method. In the invention, pumping laser and Stokes light laser which are totally coincident in the aspects of space and time are subjected to weak convergence, so that a sample generates a CARS signal; and the CARS signal enters a CCD(Charge Coupled Device) camera through an optical filter and a cylindrical lens so as to obtain a clear CARS image. The invention utilizes the CARS signal to image and relates to an imaging technology based on the vibration characteristic of energy level inside molecules. The high-speed WFOV CARS microscope system and the high-speed WFOV CARS microscope method can be used for detecting chemical compositions of the sample and can be used for carrying out imaging on a single cell, even a single organelle. The requirements of most of biological experiments are totally met. The technical problemsof low imaging speed, series photic damage to living biological tissues and the like of the existing CARS microtechnique are solved. Compared with the common fluorescence microscopy, the high-speed WFOV CARS microscope system and the high-speed WFOV CARS microscope method have the advantages that an external fluorescent probe does not need to be used, and influence on the molecular structure of the sample cannot be caused.
Owner:BEIJING LUSTER LIGHTTECH

Nonviral vectors for delivering polynucleotides

Methods and compositions for delivering polynucleotides are provided. One embodiment provides a non-viral vector comprising a recombinant polynucleotide-binding protein comprising a protein transduction domain operably linked to a targeting signal. Methods for modifying the genome of non-nuclear organelles are also provided.
Owner:GENCIA

Methods for producing modified glycoproteins

InactiveUS20060078963A1Improve efficiencyReducing competitive product inhibitionFungiBacteriaBiotechnologyHigh mannose
Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man5GlcNAc2 or other structures along human glycosylation pathways. This is achieved using a combination of engineering and / or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce “human-like” glycoproteins.
Owner:GLYCOFI

Method and apparatus for the delivery of substances to biological components

The invention concerns a method and device for needle-less delivery of substances into or through natural or artificial biological components such as membranes, organelles, cells, tissues, organs, or creatures, by exposing the said biological components to accelerated substances wherein high impact mechanical movement over short distance is used to create acceleration of substances so to drive substances into or through said natural or artificial biological components, while isolating the biological component from the driving force. The mechanical movement is preferably created by an ultrasonic member having a high repetition rate, and the space between accelerating element and biological target is preferably composed of low density compound. The delivery device can be provided with a unit for supplying substance to be delivered, to the mechanical accelerating element. The device can be constructed either as delivery device for superficial tissues, or as an endoscopes laparoscope-like or catheter-like device for delivery in minimally invasive procedures.
Owner:IGER YONI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products