Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

485 results about "Germ layer" patented technology

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals more complex than the sponge) produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers (the ectoderm and endoderm) making them diploblastic. Other animals such as chordates produce a third layer (the mesoderm) between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal’s tissues and organs through the process of organogenesis.

Differentiation of human embryonic stem cells

The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides an improved method for the formation of pancreatic endoderm, pancreatic hormone expressing cells and pancreatic hormone secreting cells. The present invention also provides methods to promote the differentiation of pluripotent stem cells without the use of a feeder cell layer.
Owner:LIFESCAN INC

PDX1 expressing endoderm

Disclosed herein are cell cultures comprising PDX1-positive endoderm cells and methods of producing the same. Also disclosed herein are cell populations comprising substantially purified PDX1-positive endoderm cells as well as methods for enriching, isolating and purifying PDX1-positive endoderm cells from other cell types. Methods of identifying differentiation factors capable of promoting the differentiation of endoderm cells, such as PDX1-positive foregut endoderm cells and PDX1-negative definitive endoderm cells, are also disclosed.
Owner:CYTHERA

Multiple mesodermal lineage differentiation potentials for adipose tissue-derived stromal cells and uses thereof

The invention relates to methods and compositions for the differentiation of stromal cells from adipose tissue into hematopoietic supporting stromal cells and myocytes of both the skeletal and smooth muscle type. The cells produced by the methods are useful in providing a source of fully differentiated and functional cells for research, transplantation and development of tissue engineering products for the treatment of human diseases and traumatic tissue injury repair.
Owner:COGNATE BIOSERVICES

Multipotent amniotic fetal stem cells

A source of multipotent amniotic fluid / fetal stem cells (MAFSCs) is disclosed. MAFSC are of fetal origin and have a normal diploid karyotype. These cells are characterized by the following cell surface markers: SSEA3, SSEA4, Tra-1-60, Tra-1-81, Tra-2-54, HLA class I, CD13, CD44, CD49b, CD105 and are distinguished by the absence of the antigen markers CD34, CD45, and HLA Class II, but are distinguished from mouse embryonic stem cells in that these cells do not express the cell surface marker SSEA1. MAFSC express the stem cell transcription factor Oct-4. MAFSC cells can be propagated for an indefinite period of time in continuous culture in an undifferentiated state. The MAFSCs have the ability to differentiate in culture in a regulated manner, into three or more subphenotypes. Cells can then be differentiated into endodermal, mesodermal and ectodermal derived tissues in vitro and in vivo. A method for isolating, identifying, expanding and differentiating MAFSCs is disclosed.
Owner:RGT UNIV OF CALIFORNIA

Pluripotent stem cells derived without the use of embryos or fetal tissue

This invention provides a method for deriving precursors to pluripotent non-embryonic stem (P-PNES) and pluripotent non-embryonic stem (PNES) cell lines. The present invention involves nuclear transfer of genetic material from a somatic cell into an enucleated, zona pellucida free human ooplastoid having a reduced amount of total cytoplasm. The present invention provides a new source for obtaining human and other animal pluripotent stem cells. The source utilizes as starting materials an oocyte and a somatic cell as the starting materials but does not require the use, creation and/or destruction of embryos or fetal tissue and does not in any way involve creating a cloned being. The oocyte never becomes fertilized and never develops into an embryo. Rather, portions of the oocyte cytoplasm are extracted and combined with the nuclear material of individual mature somatic cells in a manner that precludes embryo formation. Murine, bovine, and human examples of the procedure are demonstrated. Subsequently, the newly constructed P-PNES cells are cultured in vitro and give rise to PNES cells and cell colonies. Methods are described for culturing the P-PNES cells to yield purified PNES cells which have the ability to differentiate into cells derived from mesoderm, endoderm, and ectoderm germ layers. Methods are described for maintaining and proliferating PNES cells in culture in an undifferentiated state. Methods and results are described for analysis and validation of pluripotency of PNES cells including cell morphology, cell surface markers, pluripotent tumor development in SCID mouse, karyotyping, immortality in in vitro culture.
Owner:STEMA

Compositions And Methods For Self-Renewal And Differentiation In Human Embryonic Stem Cells

The present invention provides compositions and methods for the production of differentiated mammalian cells. More particularly, the present invention provides cellular differentiation methods employing culturing the cells on a feeder layer or under feeder-free conditions in cell culture and further contacting the cells with an inhibitor of the PI3-kinase pathway for the generation of differentiated mammalian cells from pluripotent mammalian stem cells. Preferably, the differentiated cell is selected from the group consisting of a mesendodermal cell, a mesodermal cell, and an endodermal cell.
Owner:UNIV OF GEORGIA RES FOUND INC +1

Method of differentiating stem cells into cells of the endoderm and pancreatic lineage

Methods are described to more efficiently produce cells of the endoderm and pancreatic lineage from mammalian pluripotent stem cells. These methods provide a simple, reproducible culture protocol using defined media components to enable consistent, large-scale production of pancreatic cell types for research or therapeutic uses.
Owner:WISCONSIN ALUMNI RES FOUND

PDX1-expressing dorsal and ventral foregut endoderm

Disclosed herein are cell cultures comprising dorsal and / or ventral PDX1-positive foregut endoderm cells and methods of producing the same. Also disclosed herein are cell populations comprising substantially purified dorsal and / or ventral PDX1-positive foregut endoderm cells as well as methods for enriching, isolating and purifying dorsal and / or ventral PDX1-positive foregut endoderm cells from other cell types. Methods of identifying differentiation factors capable of promoting the differentiation of dorsal and / or ventral PDX1-positive foregut endoderm cells, are also disclosed.
Owner:CYTHERA

Medium for growing human embryonic stem cells

InactiveUS7297539B2Rapid productionExpanding primate pluripotent stem (pPS) cellsHepatocytesGastrointestinal cellsGerm layerFiber
This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
Owner:ASTERIAS BIOTHERAPEUTICS INC

Immunomodulatory properties of multipotent adult progenitor cells and uses thereof

Isolated cells are described that are not embryonic stem cells, not embryonic germ cells, and not germ cells. The cells can differentiate into at least one cell type of each of at least two of the endodermal, ectodermal, and mesodermal lineages. The cells do not provoke a harmful immune response. The cells can modulate immune responses. As an example, the cells can suppress an immune response in a host engendered by allogeneic cells, tissues, and organs. Methods are described for using the cells, by themselves or adjunctively, to treat subjects. For instance, the cells can be used adjunctively for immunosuppression in transplant therapy. Methods for obtaining the cells and compositions for using them also are described.
Owner:ABT HOLDING COMPANY +1

Definitive endoderm

Disclosed herein are cell cultures comprising definitive endoderm cells and methods of producing the same. Also disclosed herein are cell populations comprising substantially purified definitive endoderm cells as well as methods for enriching, isolating and purifying definitive endoderm cells from other cell types.
Owner:VIACYTE INC

Pluripotent embryonic-like stem cells, compositions, methods and uses thereof

The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
Owner:ABT HOLDING COMPANY

Differentiation of Human Embryonic Stem Cells

The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides an improved method for the formation of pancreatic endoderm, pancreatic hormone expressing cells and pancreatic hormone secreting cells. The present invention also provides methods to promote the differentiation of pluripotent stem cells without the use of a feeder cell layer.
Owner:LIFESCAN INC

Ex vivo progenitor and stem cell expansion for use in the treatment of disease of endodermally-derived organs

InactiveUS20070082397A1Successfully addressHepatocytesDigestive systemDiseaseGerm layer
Methods of ex-vivo expansion of endodermally-derived and non-endodermally-derived progenitor and stem cells, expanded populations of renewable progenitor and stem cells and to their uses in therapeutic applications such as the production of endocrine hormones and the prevention and treatment of liver and pancreatic disease.
Owner:GAMIDA CELL

Medium for growing human embryonic stem cells

This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of mouse embryonic fibroblast feeder cells to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by defined components added to the culture environment that support rapid proliferation without differentiation. The medium contains an isotonic buffer, a blend of essential nutrients such as protein and lipids, and an effective growth factor or combination of factors that promote proliferation while inhibiting differentiation. Culturing human embryonic stem cells in fresh medium on an extracellular matrix according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
Owner:ASTERIAS BIOTHERAPEUTICS INC

Protocols for making hepatocytes from embryonic stem cells

This disclosure provides a newly developed strategy and particular options for differentiating pluripotent stem cells into cells of the hepatocyte lineage. Many of the protocols are based on a strategy in which the cells are first differentiated into early germ layer cells, then into hepatocyte precursors, and then into mature cells. The cells obtained have morphological features and phenotypic markers characteristic of human adult hepatocytes. They also show evidence of cytochrome p450 enzyme activity, validating their utility for commercial applications such as drug screening, or use in the manufacture of medicaments and medical devices for clinical therapy.
Owner:ASTERIAS BIOTHERAPEUTICS INC

In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells

A human immature endocrine cell population and methods for making an immature endocrine cell population are provided. Specifically, immature beta cells and methods for production of immature beta cells are described. Immature beta cells co-express INS and NKX6.1 and are uni-potent and thereby develop into mature beta cells when implanted in vivo. The mature beta cells in vivo are capable of producing insulin in response to glucose stimulation.
Owner:VIACYTE INC

Mesoporous silica nanoparticle-mediated delivery of DNA into arabidopsis root

Transient gene expression is a powerful tool for plant genomics studies. Recently, the use of nanomaterials has drawn great interest. Delivery with mesoporous silica nanoparticles (MSNs) has many advantages. We used surface-functionalized MSNs to deliver and express foreign DNA in Arabidopsis thaliana root cells without the aid of particle bombardment. Gene expression was detected in the epidermis layer and in the more inner cortex and endodermis root tissues. This method is superior to the conventional gene-gun method to deliver DNA, which delivers the gene to the epidermis layer only. Less DNA is needed for the MSN method. Our system is the first use of nanoparticles to deliver DNA to plants with good efficiency and without external aids. MSNs, with multifunctionality and the capability of cargo delivery to plant cells as we demonstrated, provide a versatile system for biomolecule delivery, organelle targeting, and even agriculture, such as improved nutrient uptake.
Owner:ACAD SINIC +1

Differentiation of stem cells to endoderm and pancreatic lineage

Methods are described to increase the proportion of endoderm committed cells and pancreatic lineage cells in a culture of human embryonic stem cells which are undergoing differentiation. The method also results in a stem cell derived cell culture which does not have tumorigenic capability.
Owner:WISCONSIN ALUMNI RES FOUND

Expansion of definitive endoderm cells

Disclosed herein are cell cultures comprising expanded definitive endoderm cells as well as methods for expanding definitive endoderm cells in culture.
Owner:VIACYTE INC

Method for the preparation of cells of mesodermal lineage

The present invention relates generally to the generation of cells of mesodermal lineage. More particularly, the present invention contemplates a method for the preparation of differentiated or partially differentiated mesodermal cells and their use in tissue repair, regeneration and / or augmentation therapy. The identification and generation of the mesodermal cells further provides a source of transcriptome or proteome data to assess the expression profile of genes associated with the maintenance of mesodermal cells as well as their differentiation, proliferation, expansion and / or renewal potential.
Owner:ADELAIDE RES & INNOVATION PTY LTD

Isolation of inner cell mass for the establishment of human embryonic stem cell (hESC) lines

A method for isolating an inner cell mass comprising the steps of immobilizing a blastocyst stage embryo having a zona pellucida, trophectoderm, and inner cell mass, creating an aperture in the blastocyst stage embryo by laser ablation, and removing the inner cell mass from the blastocyst stage embryo through the aperture. The aperture is through the zona pellucida and the trophectoderm. The laser ablation is acheived using a non-contact diode laser. The inner cell mass removed from the blastocyst stage embryo is used to establish human Embryonic Stem Cell lines.
Owner:RELIANCE LIFE SCI PVT

Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems

The invention relates to methods that allow for the efficient differentiation to form pancreatic endoderm cells from pluripotent stem cells such as human embryonic stem cells and definitive endoderm cells. The invention is directly applicable to the ultimate generation of pancreatic beta cells that could be used as part of a therapy to treat or even cure diabetes. Additionally, the present invention may be used to generate liver endoderm cells from human embryonic stem cells and definite endoderm cells as well. This invention relates to a method for generating definitive endoderm and pancreatic endoderm cells from stem cells, preferably human embryonic stem cells using defined media in the absence of feeder cells. A simply two step procedure to provide pancreatic endoderm cells from embryonic stem cells represents further embodiments of the present invention.
Owner:UNIV OF GEORGIA RES FOUND INC

Medium for growing human embryonic stem cells

This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of mouse embryonic fibroblast feeder cells to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by defined components added to the culture environment that support rapid proliferation without differentiation. The medium contains an isotonic buffer, a blend of essential nutrients such as protein and lipids, and an effective growth factor or combination of factors that promote proliferation while inhibiting differentiation. Culturing human embryonic stem cells in fresh medium on an extracellular matrix according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
Owner:ASTERIAS BIOTHERAPEUTICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products