Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2938results about How to "Promote differentiation" patented technology

Power saving via physical layer address filtering in WLANs

A system and method is described for saving power in a wireless network, using a physical layer address filtering protocol based on a partial address subset of the complete destination MAC address. The system comprises a PHY layer filtering protocol for generating the partial address and writing the partial address into a PHY layer header portion (e.g., PLCP header) of a sending station, or reading the partial address from the PHY layer header portion upon transmission of each frame. A receiving station receives and decodes these PHY layer header portion bits, in accordance with the protocol, and compares whether the subset of bits match that of the stations' own partial address. If a station finds a match, the station then continues further decoding the frame at PHY layer and send the complete frame to the MAC layer for further processing. The stations that do not have a match will not activate their MAC layer components. Thus, the stations of the network will avoid wasting power decoding a significant portion of the complete frame of other stations of the wireless local area networks and unnecessary MAC layer processing. When group addressed, control/management frames or other such frames are detected at the sending station, the address filtering protocol may be “disabled” using a partial address containing a predetermined value (e.g., all zeros).
Owner:TEXAS INSTR INC

Power saving via physical layer address filtering in WLANs

A system and method is described for saving power in a wireless network, using a physical layer address filtering protocol based on a partial address subset of the complete destination MAC address. The system comprises a PHY layer filtering protocol for generating the partial address and writing the partial address into a PHY layer header portion (e.g., PLCP header) of a sending station, or reading the partial address from the PHY layer header portion upon transmission of each frame. A receiving station receives and decodes these PHY layer header portion bits, in accordance with the protocol, and compares whether the subset of bits match that of the stations' own partial address. If a station finds a match, the station then continues further decoding the frame at PHY layer and send the complete frame to the MAC layer for further processing. The stations that do not have a match will not activate their MAC layer components. Thus, the stations of the network will avoid wasting power decoding a significant portion of the complete frame of other stations of the wireless local area networks and unnecessary MAC layer processing. When group addressed, control / management frames or other such frames are detected at the sending station, the address filtering protocol may be “disabled” using a partial address containing a predetermined value (e.g., all zeros).
Owner:TEXAS INSTR INC

Method to filter electronic messages in a message processing system

The present invention proposes a method to filter electronic messages in a message processing system, this message processing system comprising a temporary memory for storing the received messages intended to users, a first database dedicated to a specific recipient, and a second database dedicated to a group of recipients, this method comprising the steps of: a) receiving an electronic message and storing it into the temporary memory, b) generating a plurality of proportional signatures of said message, each signature being generated from predefined length of the message content at random location, c) comparing with a first similarity threshold the generated signatures with the signatures present in the first database related to the message's recipient, and eliminating the generated signatures that are within the first similarity threshold of the first database's signatures, thus forming a set of suspicious signatures, d) comparing with a second predefined similarity threshold the suspicious signatures with activated signatures present in the second database, and flagging the message as spam if at least one of the suspicious signatures is within the second predefined similarity threshold of the second database's activated signatures, e) allowing a user to access the message, and moving said message from the temporary memory into a recipient's memory, f) if the message is accepted by the user, storing the generated signatures related to this message into the first database related to this recipient, g) if the message is declared spam by the user, using the suspicious signatures of said message in the second database for, either, if no similar signature exists, creating a non-activated signature into the second database with said signature or updating a previously stored signature that is within of a third similarity threshold of a suspicious signature by incrementing its first matching counter, and activating said previously stored signature if the matching counter is above a first counter threshold.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Health Data Dynamics, Its Sources and Linkage with Genetic/Molecular Tests

Method and system for the analysis and source localization of the dynamical patterns in medical and health data, and linking such dynamical patterns with the individual's genetic and/or molecular data. The invention makes use of optimally positioned sensors (sensor arrays) providing input data for signal processing, time-series analysis, pattern recognition and mathematical modeling to facilitate dynamical tracking of systemic arterial pressure without a pressure cuff, local vascular activity, electrocardiographic (ECG), respiratory, physical, muscular, gastrointestinal and neural activity, temperature and other physiological/health data. The invention also facilitates separation of local signals (such as local aneurisms or local vascular activity) from non-local, central or systemic patterns (e.g. systemic blood pressure). In addition, the invention improves identification of dynamical patterns associated with a specific genotype/disorder for screening, personalized risk assessment, diagnosis and treatment control. The system can be implemented in a specialized processor, such as an ambulatory blood pressure monitor, Electrocardiograph, Holter monitor located outside subject's body or implanted inside the body, mobile/cell phone or Smart Phone/Personal Digital Assistant, computer or computer network (the Internet), including wireless or mobile network. The system can be also linked to the electronic health/medical records and other databases.
Owner:SHUSTERMAN VLADIMIR

Pore network model (PNM)-based bionic bone scaffold designing method

The invention relates to a pore network model (PNM)-based bionic bone scaffold constructing method. The method comprises the following steps of: acquiring a cross section image of microscopic three-dimensional micropore structural information and three-dimensional space position density information of a human bone by a micro computed tomography (Micro-CT) technology; performing threshold value processing to acquire binarized image data; extracting a spongy bone part, and measuring by using Mimics software to acquire porosity, penetration rate, aperture and the like; programming PNM bone scaffold parameters according to a PNM principle by using the acquired bone overall dimension data and internal size data; acquiring a generating program of the bone scaffold by using a programming tool C++ and OPENGRIP language programming; generating a three-dimensional model of the PNM bionic bone scaffold by using a Unigraphics (UG) secondary development platform; and finally leading the PNM bionic bone scaffold into the Mimics software to verify the parameters, such as the aperture, the penetration rate and the like of the PNM bionic bone scaffold. The bone scaffold well imitates a natural bone, and has high performance similar to that of the natural bone; and a good porous structure and the high penetration rate are favorable for differentiation and flowing of bone derived cells.
Owner:上海蓝衍生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products