Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

709 results about "Regenerative medicine" patented technology

Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the "process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.

Porous stent with network passage and preparation method of porous stent

InactiveCN102423272ASuitable for adhesionSuitable for depositionProsthesisBiological materialsInorganic materials
The invention belongs to the technical field of biological materials and regenerative medicine, in particular to a porous stent with a network passage and a preparation method of the porous stent. A matrix material of the porous stent disclosed by the invention can be an inorganic material, such as ceramics, glass, carbon, and the like, can be a macromolecular material with self bonding property, dissolvability and plasticity and can be a composite material of inorganic and macromolecular materials. The preparation method comprises the following steps of: uniformly mixing the matrix material with a pore-forming agent and a network-shaped substance; when the matrix material is the inorganic material, removing the pore-forming agent and the network-shaped substance for preparing by a high-temperature sintering method; and when the matrix material is the macromolecular material or the complex of the macromolecular material and the inorganic material, preparing the porous stent with the network passage by adopting a normal-temperature mould pressing/particle leaching method. According to the porous stent disclosed by the invention, a network passage structure is constructed on a three-dimensional space structure, thus the communication among holes of the stent is increased, and beneficial space is provided for a vessel growing stent by the introduced passage.
Owner:FUDAN UNIV

Bionic three-dimensional tissue engineering scaffold and preparation method thereof

The invention discloses a bionic three-dimensional tissue engineering scaffold, which is formed by high molecular fibrous membrane-loaded active growth factors, or active growth factors loaded on a composite scaffold formed by a high molecular fibrous membrane and a macropore spongy layer. With the adoption of the bionic three-dimensional tissue engineering scaffold, the problem that the concentration of active molecules loaded with an emulsion electricity texture fibrous membrane is low; the emulsion electricity texture fibrous membrane is combined with a macropore spongy or a mixed electricity texture process, so that the load rate of the active factors can be greatly improved; parts of factors are retained in the fiber through an emulsion electricity texture core-shell structure, so that the effective control of releasing time is realized, and a repairing process is monitored for a long time; and the introduction of active molecules in the scaffold plays guiding and promoting functions for proliferating regenerative cells, directionally differentiating, migrating and adhering cells, and capturing stem cells to introduce regenerative functions of newly born tissues, so that a new path is provided for development of regenerative medicine industries.
Owner:江西欧芮槿生物科技有限公司 +1

Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering

A novel BC fermentation technique for controlling 3D shape, thickness and architecture of the entangled cellulose nano-fibril network is presented. The resultant nano-cellulose based structures are useful as biomedical implants and devices, are useful for tissue engineering and regenerative medicine, and for health care products. More particularly, embodiments of the present invention relate to systems and methods for the production and control of 3-D architecture and morphology of nano-cellulose biomaterials produced by bacteria using any biofabrication process, including the novel 3-D Bioprinting processes disclosed. Representative processes according to the invention involve control of the rate of production of biomaterial by bacteria achieved by meticulous control of the addition of fermentation media using a microfluidic system. In exemplary embodiments, the bacteria gradually grew up along the printed alginate structure that had been placed into the culture, incorporating it. After culture, the printed alginate structure was successfully removed revealing porosity where the alginate had been placed. Porosity and interconnectivity of pores in the resultant 3-D architecture can be achieved by porogen introduction using, e.g., ink-jet printer technology.
Owner:VIRGINIA TECH INTPROP INC

Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering

A novel BC fermentation technique for controlling 3D shape, thickness and architecture of the entangled cellulose nano-fibril network is presented. The resultant nano-cellulose based structures are useful as biomedical implants and devices, are useful for tissue engineering and regenerative medicine, and for health care products. More particularly, embodiments of the present invention relate to systems and methods for the production and control of 3-D architecture and morphology of nano-cellulose biomaterials produced by bacteria using any biofabrication process, including the novel 3-D Bioprinting processes disclosed. Representative processes according to the invention involve control of the rate of production of biomaterial by bacteria achieved by meticulous control of the addition of fermentation media using a microfluidic system. In exemplary embodiments, the bacteria gradually grew up along the printed alginate structure that had been placed into the culture, incorporating it. After culture, the printed alginate structure was successfully removed revealing porosity where the alginate had been placed. Porosity and interconnectivity of pores in the resultant 3-D architecture can be achieved by porogen introduction using, e.g., ink-jet printer technology.
Owner:VIRGINIA TECH INTPROP INC

Compositions and populations of cells obtained from the umbilical cord and methods of producing the same

The present invention relates to populations and compositions of stem and progenitor cells derived from the umbilical cord, and methods of obtaining the same. In some embodiments, one or more entire umbilical cords or sections thereof are subjected to a process where a cell population is derived without prior removal of any blood vessel. The population may be derived using mechanical and chemical means. The presently disclosed process may be applied to a single umbilical cord or to a plurality of umbilical cords, for example, as a batch process. Optionally, this process includes removing some or all cord blood before deriving the population. In some embodiments, presently disclosed cell populations include mesenchymal stem cells derived from Wharton's jelly and endothelial progenitor cells derived from a wall of a blood vessel of an umbilical cord. Optionally, the cell population includes stem cells derived from cord blood. The presently disclosed cell populations and compositions may be banked and/or used in a number of clinical or other applications. Exemplary applications include but are not limited to applications related to regenerative medicine, for screening compounds, for research, and for gene therapy.
Owner:THE REGENERATIVE MEDICINE INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products