Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

379 results about "Composite scaffold" patented technology

Bionic three-dimensional tissue engineering scaffold and preparation method thereof

The invention discloses a bionic three-dimensional tissue engineering scaffold, which is formed by high molecular fibrous membrane-loaded active growth factors, or active growth factors loaded on a composite scaffold formed by a high molecular fibrous membrane and a macropore spongy layer. With the adoption of the bionic three-dimensional tissue engineering scaffold, the problem that the concentration of active molecules loaded with an emulsion electricity texture fibrous membrane is low; the emulsion electricity texture fibrous membrane is combined with a macropore spongy or a mixed electricity texture process, so that the load rate of the active factors can be greatly improved; parts of factors are retained in the fiber through an emulsion electricity texture core-shell structure, so that the effective control of releasing time is realized, and a repairing process is monitored for a long time; and the introduction of active molecules in the scaffold plays guiding and promoting functions for proliferating regenerative cells, directionally differentiating, migrating and adhering cells, and capturing stem cells to introduce regenerative functions of newly born tissues, so that a new path is provided for development of regenerative medicine industries.
Owner:江西欧芮槿生物科技有限公司 +1

Method used for preparing microcarrier/polymer composite scaffold by electro-deposition

InactiveCN103405809ADoes not cause early releaseDoes not cause activityProsthesisTissue repairPolymer scaffold
The invention relates to a method used for preparing a microcarrier/polymer composite scaffold by electro-deposition. The method comprises following steps: the surface of a microcarrier is modified, so that the surface of the microcarrier is positively charged; the microcarrier is loaded with a bioactive component so as to obtain the functional microcarrier; the functional microcarrier is delivered into an organic solvent, and the mixture is treated by ultrasonic and is stirred so as to obtain an electro-deposition solution with a concentration of 0.1 to 1.0mg/ml; a polymer scaffold is prepared, an electrode provided with the polymer scaffold is taken as a cathode, and a blank electrode is taken as an anode; the cathode and the anode are delivered into the electro-deposition solution, and the electro-deposition solution is stirred for electro-deposition so as to obtain the composite scaffold; and the composite scaffold is washed and dried in the air so as to obtain the microcarrier/polymer composite scaffold. Preparation time is short; reaction conditions are mild; and it is impossible to cause early release or inactivation of the bioactive component loaded on the microcarrier. The microcarrier/polymer composite scaffold is capable of simulating the multiple interaction of cells in the body, ECM and growth factors, and providing an ideal environment for tissue therapy and tissue repair.
Owner:DONGHUA UNIV

Nanometer composite scaffolds assembled by adopting chitosan scaffold, preparation method and applications thereof

InactiveCN102850576AUniform internal pore structureReversible shape resilienceSurgeryProsthesisElectricityNanoparticle
The present invention provides a method for achieving assembly of a macroscopic size nanometer material and obtaining a series of functional nanometer composite scaffolds by adopting a chitosan scaffold as a matrix, wherein the series of the functional nanometer composite scaffolds are obtained by assembling various functional nanometer materials in a chitosan scaffold. The method specifically comprises that: unidirectional freezing is performed to obtain a chitosan porous scaffold, the chitosan porous scaffold is immersed into a nanometer material aqueous solution, and the nanoparticles are adsorbed onto the surfaces of pore channels inside the chitosan porous scaffold so as to obtain the nanometer composite scaffold; or a nanometer material is directly mixed in a chitosan solution before a chitosan porous scaffold is obtained, and then unidirectional freezing is performed to obtain the nanometer composite chitosan porous scaffold. The method of the present invention has characteristics of simple operation and wide applicability, and can be applicable for mass preparation of required products. According to the nanometer composite scaffold of the present invention, the reversible shape resilience performance of the original chitosan porous scaffold is provided, and the functionality of the nanometer material is provided for the final macroscopic scaffold, such that important guiding effects are provided for applications of various functional nanometer materials in optics, electricity, magnetism, thermotics, biomedicine, and other fields.
Owner:UNIV OF SCI & TECH OF CHINA

Scaffolds of umbilical cord decellularized Wharton jelly for tissue engineering and preparation method thereof

InactiveCN102198292AControllable fine structureModerate degradation rateProsthesisFine structureEnzymatic digestion
The invention discloses scaffolds of umbilical cord decellularized Wharton jelly for tissue engineering and a preparation method thereof. Umbilical cords are employed as the raw material and their outer membranes and vascular tissues are peeled off. And the rest part of the umbilical cords is subjected to hypotonic freeze-thaw, mechanical pulverization, differential centrifugation, enzymatic digestion for decellularization. Then the umbilical cord Wharton jelly is collected and injected into a mold. After freeze drying and crosslinking, multiple three dimensional porous sponge scaffolds and composite scaffolds can be obtained. The method of the invention has the advantages of wide material source, low cost, simple technology. And the prepared scaffolds are characterized by controllable fine structure, appropriate degradation rate, good biocompatibility, and biomechanical strength, which are in favor of cell adhesion and the uniform distribution of seed cells within the scaffolds, as well as seed cell multiplication, migration and growth. Thus, the scaffolds of umbilical cord decellularized Wharton jelly in the invention can be widely applied in the tissue engineering field such ascartilage, bone, skin and nerve, with a favorable clinical application prospect.
Owner:卢世璧

Porous calcium phosphate/natural polymer composite scaffold, preparation method and application thereof

The invention discloses a porous calcium phosphate/natural polymer composite scaffold, a preparation method and application thereof. The method comprises the following steps: firstly utilizing 3D printing to manufacture a polymer support in which holes are completely connected as a sacrifice model, putting the sacrifice model into a mold, then uniformly mixing natural polymer microspheres with calcium phosphate bone cement to prepare a slurry, pouring the slurry into the model so that the holes of the model are filled with the slurry, then using a solvent to remove the polymer model so as to obtain the connected porous calcium phosphate/natural polymer composite scaffold. Combined with the characteristics of bone cement such as low-temperature self-setting and good mechanical property andthe characteristics of natural polymer such as high biological activity and easy degradation, the three-dimensional connected macroporous structure composite scaffold is prepared. After the scaffold is planted into the body, the natural polymer microspheres are rapidly degraded so as to form a hierarchical pore structure in situ. High-temperature processing is not needed in the preparation process, the biological activity and mechanical property are good, the structure and degradation rate are controllable, the ingrowth of bone tissues and blood vessels is facilitated, and the bone repair effect is improved.
Owner:SOUTH CHINA UNIV OF TECH

3D-printed multi-structure bone composite scaffold

The invention relates to a 3D-printed multi-structure bone composite scaffold. The 3D-printed multi-structure bone composite scaffold comprises a multi-layer structure, wherein different layers are made of composite materials in different proportions through 3D printing, and the 3D-printed multi-structure bone composite scaffold has different 3D printing fiber spacings and porosity factors. The specific structure comprises a bionic bone structure, the outer layer is low in porosity and small in aperture to simulate a compact bone structure, the inner layer is high in porosity and large in aperture to simulate a cancellous bone structure, and the scaffold similar to a real bone structure is integrally formed; in an osseointegration structure, the outer layer is high in porosity and large inaperture so as to promote integration with surrounding bones, the inner layer is low in porosity and small in aperture so as to support the overall structure while promoting osseointegration, and thewhole structure is suitable for repairing bone defects. The material of the scaffold is preferably a composite material of tricalcium phosphate (TCP) and polycaprolactone (PCL), and the scaffold hasgood biocompatibility and printability. The bone repair effect is promoted by adding metal ions and performing surface modification treatment.
Owner:NOVAPRINT THERAPEUTICS SUZHOU CO LTD

Dual-layer composite scaffold for repairing cartilage of tissue engineered bone and preparation method thereof

The invention discloses a double-layer composite scaffold for repairing cartilage in a tissue-engineered bone. The scaffold comprises a cartilage layer and a subchondral layer, wherein the cartilage layer and the subchondral layer are combined into a whole through photopolymerisable modified hyaluronic acid gel, wherein the cartilage layer is made from transformed chondrocyte-loaded photopolymerisable modified hyaluronic acid gel, and the subchondral layer is made of a porous bio-glass scaffold. The invention also discloses a preparation method of the double-layer composite scaffold for repairing cartilage in a tissue-engineered bone, which comprises the following steps: uniformly mixing the transformed chondrocyte-loaded photopolymerisable modified hyaluronic acid gel and in-vitro induced transformed chondrocyte cells, and forming mixed gel through ultraviolet polymerization; putting the porous bio-glass scaffold on the mixed gel, adding the photopolymerisable modified hyaluronic acid gel, and performing light-crosslinking to obtain the double-layer composite scaffold for repairing cartilage in the tissue-engineered bone. The double-layer composite scaffold has excellent biocompatibility and can be degraded, and the preparation method is simple.
Owner:TONGJI UNIV

Scaffold for skin tissue engineering and a method of synthesizing thereof

The embodiments herein disclose a method of fabricating composite scaffolds for skin tissue regeneration. The methacrylated hyaluronic acid (HAMA) and methacrylated gelatin (GelMA) are synthesized. The poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds are synthesized. The hydrogel is synthesized. The composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds is fabricated. A plurality of physico-chemical characteristics of the composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds are analysed. The physico-chemical characteristics comprises mechanical properties, swelling ratio and enzymatic degradation and scanning electron microscope imaging. The fibroblast cells are encapsulated within the composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds and hydrogels. The fibroblast cells are seeded on composite scaffold and PGS-PCL scaffold. The fibroblast cell viability, fibroblast cell attachment, fibroblast cell spreading, fibroblast cell proliferation and fibroblast cell metabolism are analysed in composite scaffolds, PGS-PCL scaffolds and hydrogels.
Owner:ESLAMI MARYAM +2

Integrated three-layer composite scaffold for repairing joint cartilages, and production method thereof

The invention provides an integrated three-layer composite scaffold for repairing joint cartilages, and a production method thereof. The composite scaffold comprises a cartilage layer, a calcified subchondral bone plate layer and a spongy bone layer which are sequentially superposed from bottom to top, the composite scaffold is formed in a one-shot manner through three-dimensional printing, the cartilage layer is a sodium alginate hydrogel porous layer, the calcified subchondral bone plate layer is a biological ceramic particle and sodium alginate composite hydrogel compact layer, the spongy bone layer is a biological ceramic particle and sodium alginate composite hydrogel porous layer, and the sodium alginate components in all above layers undergo ionic cross-linking to form an integrated structure, so every layer of the composite scaffold has a specific composition and a specific structure, the composite scaffold has good interlayer binding force, and the integral structure stability of the composite scaffold is improved. The invention also provides the production method of the integrated three-layer composite scaffold for repairing joint cartilages. The method has the advantages of simplicity, easiness in enforcement, easiness in control of technologic parameters, acceleration of the promotion and application of a three-dimensional printing technology in the biologic field, and wide market prospect.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Ligament-bone composite scaffold with biomimetic connecting interface and forming method thereof

The invention relates to a ligament-bone composite scaffold with a biomimetic connecting interface and a forming method thereof. The forming method comprises the following steps: firstly simulating a natural ligament-bone interface structure and utilizing a rapid forming technology to manufacture a resin negative type of a bone scaffold model with a fiber connecting structure; pouring a bone scaffold material solution into the resin negative type, and performing freeze-drying and high-temperature sintering to manufacture a bone scaffold with an internal communication pipeline and the fiber connecting structure; then primarily connecting ligament fiber with the fiber connecting structure of the bone scaffold, and fixing a die used for manufacturing of a biomimetic interface with a ligament-bone scaffold formed by primary connection; pouring the ligament material composite solution with the bone scaffold material in various changes of concentration into the interface of the ligament and the bone scaffold as secondary connection; and performing freeze-drying and removing the die, so as to obtain the ligament-bone composite scaffold with the biomimetic interface. According to the invention, the transmission of nutrients and metabolites is facilitated, the connecting strength of the ligament-bone composite scaffold is improved, and the ingrowth of cells after implantation is facilitated.
Owner:XI AN JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products