Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

303 results about "Enzymatic degradation" patented technology

Enzymatic deactivation (also known as enzymatic degradation) is a mechanism that makes neurotransmitters inactive. Enzymatic deactivation occurs when an enzyme changes the structure of a neurotransmitter so that it is no longer recognized by the receptor. An example is enzymatic deactivation is seen with acetylcholinesterase (AChE).

Abuse-deterrent drug formulations

An abuse-deterrent pharmaceutical composition has been developed to reduce the likelihood of improper administration of drugs, especially drugs such as opiods. In the preferred embodiment, the drug is modified to increase its lipophilicity by forming a salt between the drug and one or more fatty acids wherein the concentration of the one or more fatty acids is one to 15 times the molar amount of the active agent, preferably two to ten times the molar amount of the active agent. In one embodiment the modified drug is homogeneously dispersed within microparticles composed of a material that is either slowly soluble or not soluble in water. In some embodiments the drug containing microparticles or drug particles are coated with one or more coating layers, where at least one coating is water insoluble and preferably organic solvent insoluble. The abuse-deterrent composition prevents the immediate release of a substantial portion of drug, even if the physical integrity of the formulation is compromised (for example, by chopping with a blade or crushing) and the resulting material is placed in water, snorted, or swallowed. However, when administered as directed, the drug is slowly released from the composition as the composition is broken down or dissolved gradually within the GI tract by a combination of enzymatic degradation, surfactant action of bile acids, and mechanical erosion.
Owner:COLLEGIUM PHARMA INC

Manufacturing process for the production of polypeptides expressed in insect cell-lines

The present invention provides a manufacturing method for polypeptides that are produced in insect cells using a baculoviral expression system. In one example, the insect cell culture is supplemented with a lipid mixture immediately prior to infection (e.g., one hour prior to infection). The polypeptides are isolated from the insect cell culture using a method that employs anion exchange or mixed-mode chromatography early in the purification process. This process step is useful to remove insect-cell derived endoglycanases and proteases and thus reduces the loss of desired polypeptide due to enzymatic degradation. In another example, mixed-mode chromatography is combined with dye-ligand affinity chromatography in a continuous-flow manner to allow for rapid processing of the insect-cell culture liquid and capture of the polypeptide. In yet another example, a polypeptide is isolated from an insect cell culture liquid using a process that combines hollow fiber filtration, mixed-mode chromatography and dye-ligand affinity in a single unit operation producing a polypeptide solution that is essentially free of endoglycanase and proteolytic activities. In a further example, the isolated polypeptides are glycopeptides having an insect specific glycosylation pattern, which are optionally conjugated to a modifying group, such as a polymer (e.g., PEG) using a glycosyltransferase and a modified nucleotide sugar.
Owner:NOVO NORDISK AS

Abuse-deterrent drug formulations

An abuse-deterrent pharmaceutical composition has been developed to reduce the likelihood of improper administration of drugs, especially drugs such as opiods. In the preferred embodiment, the drug is modified to increase its lipophilicity by forming a salt between the drug and one or more fatty acids wherein the concentration of the one or more fatty acids is one to 15 times the molar amount of the active agent, preferably two to ten times the molar amount of the active agent. In one embodiment the modified drug is homogeneously dispersed within microparticles composed of a material that is either slowly soluble or not soluble in water. In some embodiments the drug containing microparticles or drug particles are coated with one or more coating layers, where at least one coating is water insoluble and preferably organic solvent insoluble. The abuse-deterrent composition prevents the immediate release of a substantial portion of drug, even if the physical integrity of the formulation is compromised (for example, by chopping with a blade or crushing) and the resulting material is placed in water, snorted, or swallowed. However, when administered as directed, the drug is slowly released from the composition as the composition is broken down or dissolved gradually within the GI tract by a combination of enzymatic degradation, surfactant action of bile acids, and mechanical erosion.
Owner:COLLEGIUM PHARMA INC

Scaffold for skin tissue engineering and a method of synthesizing thereof

The embodiments herein disclose a method of fabricating composite scaffolds for skin tissue regeneration. The methacrylated hyaluronic acid (HAMA) and methacrylated gelatin (GelMA) are synthesized. The poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds are synthesized. The hydrogel is synthesized. The composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds is fabricated. A plurality of physico-chemical characteristics of the composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds are analysed. The physico-chemical characteristics comprises mechanical properties, swelling ratio and enzymatic degradation and scanning electron microscope imaging. The fibroblast cells are encapsulated within the composite scaffold comprising hydrogel and poly (glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) microfibrous scaffolds and hydrogels. The fibroblast cells are seeded on composite scaffold and PGS-PCL scaffold. The fibroblast cell viability, fibroblast cell attachment, fibroblast cell spreading, fibroblast cell proliferation and fibroblast cell metabolism are analysed in composite scaffolds, PGS-PCL scaffolds and hydrogels.
Owner:ESLAMI MARYAM +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products