Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

587 results about "Microcarrier" patented technology

A microcarrier is a support matrix allowing for the growth of adherent cells in bioreactors. In 1967, microcarrier development began when van Wezel found that microcarriers could support the growth of anchorage-dependent cells. Microcarriers are typically 125 - 250 micrometre spheres and their density allows them to be maintained in suspension with gentle stirring. Microcarriers can be made from a number of different materials including DEAE-dextran, glass, polystyrene plastic, acrylamide, collagen, and alginate. These microcarrier materials, along with different surface chemistries, can influence cellular behavior, including morphology and proliferation. Surface chemistries can include extracellular matrix proteins, recombinant proteins, peptides, and positively or negatively charged molecules.

Method used for preparing microcarrier/polymer composite scaffold by electro-deposition

InactiveCN103405809ADoes not cause early releaseDoes not cause activityProsthesisTissue repairPolymer scaffold
The invention relates to a method used for preparing a microcarrier/polymer composite scaffold by electro-deposition. The method comprises following steps: the surface of a microcarrier is modified, so that the surface of the microcarrier is positively charged; the microcarrier is loaded with a bioactive component so as to obtain the functional microcarrier; the functional microcarrier is delivered into an organic solvent, and the mixture is treated by ultrasonic and is stirred so as to obtain an electro-deposition solution with a concentration of 0.1 to 1.0mg/ml; a polymer scaffold is prepared, an electrode provided with the polymer scaffold is taken as a cathode, and a blank electrode is taken as an anode; the cathode and the anode are delivered into the electro-deposition solution, and the electro-deposition solution is stirred for electro-deposition so as to obtain the composite scaffold; and the composite scaffold is washed and dried in the air so as to obtain the microcarrier/polymer composite scaffold. Preparation time is short; reaction conditions are mild; and it is impossible to cause early release or inactivation of the bioactive component loaded on the microcarrier. The microcarrier/polymer composite scaffold is capable of simulating the multiple interaction of cells in the body, ECM and growth factors, and providing an ideal environment for tissue therapy and tissue repair.
Owner:DONGHUA UNIV

Cell handling device, human tissue regeneration composition, and human tissue regeneration method

The main objects of the present invention, which relates to regenerative medical treatments, are to enable (i) storage and conveyance of harvested or cultured cells without contamination occuring (ii) simple injection of the cells into a living body. To achieve these objects, cells harvested from a living body, or cells obtained by culturing harvested cells, are stored in a syringe-type storage vessel and subsequently transplanted into a living body. It is preferable that at least a part of the storage vessel inner wall in contact with the cells is formed from a cell non-adhesive material. Besides enabling cells in the vessel to take in the oxygen they require to survive, the present invention also enables cells quick and easy transplantation of cells into a living body without a cell detachment process, because cells are prevented from adhering to the inside of the vessel. Further, it is preferable that a stored tissue regeneration composition contains cell culture microcarriers floating in a fluidity medium, and that the cell culture microcarriers are composed of a bioabsorbable material and have cells adhering to their surfaces. Using this kind of tissue regeneration composition, a regenerative treatment can be carried out satisfactorily by simply and quickly transplanting cells from the syringe-type cell storage vessel into a living body without intricate scaffold-related procedures being required.
Owner:JMS CO LTD

Compound medicine microcarrier with core-shell structure

The invention discloses an emulsion multi-dimensional rapid preparation microfluidic device, and discloses a compound medicine microcarrier with a core-shell structure, and applications thereof. The compound medicine microcarrier with the core-shell structure is characterized by being prepared through taking W / O / W or O / W / O double emulsion as templates by adopting a microfluidic method, a core and a shell are respectively made of two degradable polymer materials with biocompatibility and are respectively hydrophilic and hydrophobic. The hydrophilic part can be loaded with various hydrophilic medicines, the hydrophobic part can be loaded with various hydrophobic medicines; along with the degradation of the core-shell material, the hydrophilic and hydrophobic drugs loaded internally can be sustainably released, and the purpose that the hydrophilic and hydrophobic medicines are simultaneously delivered and synergically slow-released can be achieved. In addition, the release rate of the medicine can be controlled by controlling the thickness of the shell layer. The microcapsule with the core-shell structure has the characteristics that the preparation method is low in cost, easy to operate and convenient to produce on large scale, and the like, the prepared medicine microcarrier has good biocompatibility, is high in medicine encapsulation rate, and good in controllability.
Owner:SOUTHEAST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products