Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1473results about "3D printing" patented technology

Porous Substrates for Implantation

A porous substrate or implant for implantation into a human or animal body constructed from a structural material and having one or more regions which when implanted are subjected to a relatively lower mechanical loading. The region(s) are constructed with lesser mechanical strength by having a lesser amount of structural material in said region(s) relative to other regions. This is achieved by controlling pore volume fraction in the regions. A spacer is adapted to define an open-cell pore network by taking a model of the required porous structure, and creating the spacer to represent the required porous structure using three-dimensional modelling. Material to form the substrate about the spacer in infiltrated the scaffold structure formed.
Owner:NATIONAL UNIVERSITY OF IRELAND

Solid free-form fabrication methods for the production of dental restorations

Solid free form fabrication techniques can be utilized indirectly to manufacture substrates, dies, models, near-net shapes, shells, and wax-ups that are then used in the manufacture of dental articles. Digital light processing is the most preferred indirect method for the production of substrates. After the substrates are produced, various coating or deposition techniques such as gel casting, slip casting, slurry casting, pressure infiltration, dipping, colloidal spray deposition or electrophoretic deposition are used to manufacture the dental article.
Owner:IVOCLAR VIVADENT AG

System, Method And Apparatus For Tooth Implant Planning And Tooth Implant Kits

InactiveUS20100105011A1Improve the level ofFacilitate proper fixture placementDental implantsDispensing apparatusPatient dataDental implant
Systems and methods support dental implant patient scheduling and treatment process relating to packaging one or more dental appliances as a kit which is readily used by dental professional during surgery, by communicating manufacturing progress information with a doctor over a network and performing patient scheduling and treatment when the dental appliances reach a certain manufacturing progress. A network-based service may also provide a doctor with a treatment solution including a surgical kit derived from patient data.
Owner:INPRONTO

Laser-produced implants

A method of producing an orthopedic implant including the steps of building a flat open model of at least a portion of an implant. The flat open model may be built using a selective laser center process. The flat open model preferably includes at least one groove along either a first surface or a second surface of the model. Next a force may be applied to the flat open model at predetermined locations to thereby cause the model to bend and assume a shape similar to a desired result. The now bent model may be resurfaced by either applying additional material such that the bent flat open model assumes the shape of a desired implant or the bent open model may be snap fit to an additional element.
Owner:UNIV OF LIVERPOOL +2

Three-dimensional fabricating systems for rapidly producing objects

This invention relates to rapid prototyping systems, specifically, a composition for a release film comprising one or more base materials selected from the group consisting of silicone, polycarbonate, polyethylene, and polypropylene; and one or more free-radical inhibitors.
Owner:DENTSPLY SIRONA INC

Method of Manufacturing and Installing a Ceramic Dental Implant with an Aesthetic Implant Abutment

The present invention relates to a method for manufacturing a tooth prosthesis, for insertion in a jawbone, including an implant and an abutment on top of the implant. The method includes: defining a shape of the prosthesis and its location in the jawbone by using first data from a first CT scan image of the jawbone and second data from a second image of a gypsum cast, correlating first and second data by extracting from the first data first position reference data of a first reference in the first image, and from the second data second position reference data of a second reference in the second image, the second reference being identical to the first reference; performing a geometric transformation on the second data and / or the first data to have a coincidence of the second image with the first image and to combine the first and second data into composite scan data.
Owner:ORATIO

Device for the generative manufacturing of three-dimensional components

ActiveUS20130108726A1Efficient and cost-effective operationEfficiently formedManufacturing platforms/substratesConfectioneryEngineeringMonochrome
The invention relates to a device for producing products having individual geometries, comprising a substrate carrier device, a material application device for applying material, preferably above the substrate carrier device, which material application device can be moved relative to the substrate carrier device, and a control device which is coupled to the material application device for signaling. According to the invention, the material application device is coupled to an input interface for signaling and for selection of a first or a second application mode, the control device and the application device being designed such as to produce, in the first application mode, a three-dimensional product on the surface of a substrate plate by way of an additive production method, said substrate plate being connected to the substrate carrier device. According to the additive production method, a curable material is applied in consecutive layers, one or more predetermined regions are selectively cured after or during each application of a layer, the predetermined regions being bonded to one or more regions of the underlying layer. The predetermined region(s) is / are predetermined by a cross-section geometry of the product in the respective layer and is / are stored in the control device, and the curable material is applied in a plurality of consecutive layers to produce the three-dimensional product. The control device and the application device are further designed such that in the second mode of application one or more colors are applied to predetermined regions of a print substrate material connected to the substrate carrier device to produce a monochrome or polychrome print.
Owner:BEGO MEDICAL

Patient-specific manufacturing of porous metal prostheses

ActiveUS20120310364A1Low efficiencyAvoid substantially changing porosityImpression capsPretreated surfacesProsthesisPlastic surgery
A patient-specific porous metal prosthesis and a method for manufacturing the same are provided. The orthopaedic prosthesis may be metallic to provide adequate strength and stability. Also, the orthopaedic prosthesis may be porous to promote bone ingrowth.
Owner:ZIMMER INC

Desktop process for producing dental products by means of 3-dimensional plotting

A process for fabricating dental form pieces for dental restoration and replacement parts is provided and includes the step of applying a material, on a firm support or a fluid medium, by a three dimensional plotting technology in a layer by layer manner. The material has micro cords and / or micro drops which include at least one of a meltable, polymerizable, polycondensable, and polyaddable constituent element that is an unfilled monomer, a reinforced monomer, oligomer, polymer, or a ceramic element. The process also includes the step of hardening the applied material by cooling of the material, chemical reaction, polymerization with thermal handling, or polymerization by irradiation of the material with UV or visible light.
Owner:IVOCLAR VIVADENT AG

Methods for placing an implant analog in a physical model of the patient's mouth

A method of placing a dental implant analog in a physical model for use in creating a dental prosthesis is provided. The physical model, which is usually based on an impression of the patient's mouth or a scan of the patient's mouth, is prepared. The model is scanned. A three-dimensional computer model of the physical model is created and is used to develop the location of the dental implant. A robot then modifies the physical model to create an opening for the implant analog. The robot then places the implant analog within the opening at the location dictated by the three-dimensional computer model.
Owner:BIOMET 3I LLC

Haptically enabled dental modeling system

The invention provides a digital dentistry system that utilizes a haptic interface and features a computer-based design application configured to allow the intuitive construction of irregular, amorphous three-dimensional structures typically seen in dental restorations, utilizing, where appropriate, the design skills of a user. In certain embodiments, the system provides a comprehensive digital solution for dental labs in the business of creating dental restorations such as partial frameworks, crowns, copings, bridge frameworks, implants and the like, with a sense of touch provided by a haptic interface device.
Owner:SENSABLE TECH

Methods for manufacturing dental implant components

A method of manufacturing a rapid prototype overmold for locating a dental implant analog in a modified stone model for use in creating a tooth prosthesis is provided. An impression of a mouth having a first installation site that has a dental implant and a gingival healing abutment with at least one informational marker installed is taken. A stone model based on the impression is prepared. The model is scanned. A three-dimensional computer model of the installation site on a CAD program using data from the scan is created. The at least one informational marker is determined to gather information about the location of the dental implant. Abutment dimensional information based on the three-dimensional image and the at least one informational marker is developed. Overmold rapid prototype dimensional information based on the three-dimensional image is developed. The overmold rapid prototype adapted to fit over the modified stone model is fabricated.
Owner:BIOMET 3I LLC

Dental restorations formed by solid free-form fabrication methods

InactiveUS6994549B2Manufacture of restorationAdditive manufacturing apparatusImpression capsFree formThin layer
Solid free form fabrication techniques such as fused deposition modeling and three-dimensional printing are used to create a dental restoration. Three-dimensional printing comprises inkjet printing a binder into selected areas of sequentially deposited layers of powder. Each layer is created by spreading a thin layer of powder over the surface of a powder bed. Instructions for each layer may be derived directly from a CAD representation of the restoration. The area to be printed is obtained by computing the area of intersection between the desired plane and the CAD representation of the object. All the layers required for an aesthetically sound restoration can be deposited concurrently slice after slice and sintered / cured simultaneously. The amount of green body oversize is equivalent to the amount of shrinkage which occurs during sintering or curing. While the layers become hardened or at least partially hardened as each of the layers is laid down, once the desired final shaped configuration is achieved and the layering process is complete, in some applications it may be desirable that the form and its contents be heated or cured at a suitably selected temperature to further promote binding of the powder particles.
Owner:JENERICPENTRON

Programmable implants and methods of using programmable implants to repair bone structures

Various embodiments of implant systems and related apparatus, and methods of operating the same are described herein. In various embodiments, an implant for interfacing with a bone structure includes a web structure, including a space truss, configured to interface with human bone tissue. The space truss includes two or more planar truss units having a plurality of struts joined at nodes. Implants are optimized for the expected stress applied at the bone structure site.
Owner:4-WEB

Spinal cage insert, filler piece and method of manufacturing

A spinal cage insert for a spinal cage is provided. The spinal cage insert has a shape suitable to be inserted into and fit closely in an interior of the spinal cage. The insert may comprise a member of the calcium phosphate family. The spinal cage insert may be made to a desired shape of porous ceramic, and it may include channels and / or surface features. Various shapes of filler pieces are also provided, wherein the filler pieces may be suitable to augment external regions of vertebrae which have been fused to each other so as to promote build-up of bone. The spinal cage insert and / or the filler pieces may be osteoconductive and may also contain osteoinductive substances or material. The articles may also contain cavities suitable for containing particles of demineralized bone matrix (DBM). Methods of use and methods of manufacturing the spinal cage insert and filler pieces are also provided.
Owner:THERICS

Metallic structures having porous regions from imaged bone at pre-defined anatomic locations

A method of forming an implant having a porous region replicated from scanned bone, the method comprising imaging bone with a high resolution digital scanner to generate a three-dimensional design model of the bone; removing a three-dimensional section from the design model; fabricating a porous region on a digital representation of the implant by replacing a solid portion of the digital implant with the section removed from the digital representation; and using an additive manufacturing technique to create a physical implant including the fabricated porous region.
Owner:BIOMET MFG CORP

Customized dental prosthesis for periodontal- or osseointegration, and related systems and methods

A dental prosthesis for periodontal integration is disclosed. Furthermore a customized dental prosthesis for osseointegration is disclosed having a first manufactured portion shaped to substantially conform to the three-dimensional surface of a root of a tooth to be replaced and a second manufactured portion shaped to substantially conform to the three-dimensional surface of a crown of a tooth to be replaced. Furthermore a customized manufactured splint is disclosed to position and fixate a tooth-shaped prosthesis. Furthermore a CAD / CAM based method of and a system for manufacturing a customized dental prosthesis replacing an extracted tooth is disclosed, where the extracted tooth is scanned regarding its three-dimensional shape and substantially copied using (a) an imaging system in-vitro like a 3D scanner or in-vivo like a cone beam CT system, (b) CNC machinery and (c) biocompatible material that is suitable to be integrated into the extraction socket and at least partially adopted by the existing tissue forming the socket.
Owner:NATURAL DENTAL IMPLANTS

Laser-produced implants

A method of producing an orthopedic implant including the steps of building a flat open model of at least a portion of an implant. The flat open model may be built using a selective laser sinter process. The flat open model preferably includes at least one groove along either a first surface or a second surface of the model. Next a force may be applied to the flat open model at predetermined locations to thereby cause the model to bend and assume a shape similar to a desired result. The now bent model may be resurfaced by either applying additional material such that the bent flat open model assumes the shape of a desired implant or the bent open model may be snap fit to an additional element.
Owner:UNIV OF LIVERPOOL +2

Apparatus for Forming Layered Object

A layered-object forming apparatus (1) includes a holding mechanism (10) that holds a base (12), a liquid applying device (20) that applies a liquid to a predetermined position from above the base, a powder applying device (30) that allows a powder to fall from above the base, and a powder removing device that removes an unconsolidated powder on the base. Then, a process of applying the liquid by the liquid applying device, subsequently applying the powder by the powder applying device, subsequently consolidating the liquid and the powder applied onto the liquid and then removing the powder that has not been consolidated with the liquid by the powder removing device is repeated, thereby forming a three-dimensional structure on the base. Thus, it is possible to produce a three-dimensional structure that at least partially has a smooth surface, thus allowing omission or simplification of a surface smoothing treatment.
Owner:SHOFU INC

Spinal implant with porous and solid surfaces

A spinal implant including porous and solid portions is disclosed. The implant includes porous portions on upper and lower surfaces and in an interior thereof. Methods of manufacturing and implanting such implants are also disclosed.
Owner:STRYKER EURO OPERATIONS HLDG LLC

Coiled implants and systems and methods of use thereof

Implants, systems and methods of making and using thereof are described herein. The implants are formed from one or more coils, preferably a plurality of coils. Optionally the coils are included in a set or group of more than one coil. Optionally, the implant is symmetric about one or more planes. Typically an implant includes at least two coils (or sets or groups of coils) that are adjacent to each other intersect with each other at one or more intersection regions. Two or more coils may intersect at a plurality of intersection regions, optionally along an array of intersection regions, within the implant or on the outer side wall of the implant. Optionally, the implants include one or more plates to aid in fixation and / or insertion. The implants may be used in a variety of different spaces in the body that require bone growth.
Owner:INST FOR MUSCULOSKELETAL SCI & EDUCATION

Tooth shading, transparency and glazing

ActiveUS20190029784A1Highly accurate three-dimensional modelImpression capsImage analysisNatural toothComputer science
Systems, methods, and / or computer-readable media described herein provide technical solutions to the highly technical problems of machine generation of dental restorations. In particular, these systems, methods and / or computer readable media may provide technical solutions to aid in the creation of dental restorations that more closely resemble a natural tooth (including its internal optical structure). These systems, methods and / or computer readable media may help in virtually rendering a tooth, including its internal optical structure, and apply these renderings (e.g., digital models) to the fabrication of the dental restoration.
Owner:ALIGN TECH

Method for production of an artificial tooth

The invention relates to a method for producing an artificial tooth, comprising a base layer substantially determining strength and at least one cover layer substantially determining appearance of a finished artificial tooth, said method comprising: establishing the available outer shape and dimensions for the finished artificial tooth, e.g. with a CAD-CAM system; -acquiring an image of a natural tooth to be replaced by the artificial tooth or a corresponding natural tooth over at least the in use visible outer surface thereof, including variations in appearance in said outer surface; -determining in the appearance determining properties of the cover layer to correspond with the variations in the appearance of the natural tooth to be replaced or the corresponding natural tooth, and determining a thickness of the cover layer locally required for said correspondence; -constructing the base layer to a shape and dimensions, which are based on the shape and dimensions available for the artificial tooth and prior to construction deducting, in the CAD-CAM system therefrom the locally required thickness of the cover layer, and -applying the cover layer over the base layer to attain the available outer shape and dimensions for the finished artificial tooth.
Owner:CICERO DENTAL SYST

Processes for producing regular repeating patterns on surfaces of interbody devices

Processes for producing interbody spinal implants having a body with a top surface, a bottom surface, opposing lateral sides, opposing anterior and posterior portions, a substantially hollow center, and a single vertical aperture; and optionally, one or two integration plates affixed to the body. The processes include applying an additive process, a subtractive process, or both processes to at least one surface of the interbody spinal implant to form a roughened surface topography having a regular repeating pattern. The roughened surface topography is specifically designed to provide certain frictional characteristics, load dispersion, and to influence the biological responses that occur during bone healing and fusion.
Owner:TITAN SPINE

Implants having three distinct surfaces

ActiveUS20120316650A1Positively influence naturally occurring biological bone remodelingPositively fusion responseBone implantSpinal implantsRough surfaceBone structures
An interbody spinal implant having at least three distinct surfaces including (1) at least one integration surface having a roughened surface topography including macro features, micro features, and nano features, without sharp teeth that risk damage to bone structures; (2) at least one graft contact surface having a coarse surface topography including micro features and nano features; and (3) at least one soft tissue surface having a substantially smooth surface including nano features. Also disclosed are processes of fabricating the different surface topographies, which may include separate macro processing, micro processing, and nano processing steps.
Owner:TITAN SPINE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products