Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

80 results about "Endoderm" patented technology

Endoderm is one of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer), with the endoderm being the innermost layer. Cells migrating inward along the archenteron form the inner layer of the gastrula, which develops into the endoderm.

Pluripotent stem cells derived without the use of embryos or fetal tissue

This invention provides a method for deriving precursors to pluripotent non-embryonic stem (P-PNES) and pluripotent non-embryonic stem (PNES) cell lines. The present invention involves nuclear transfer of genetic material from a somatic cell into an enucleated, zona pellucida free human ooplastoid having a reduced amount of total cytoplasm. The present invention provides a new source for obtaining human and other animal pluripotent stem cells. The source utilizes as starting materials an oocyte and a somatic cell as the starting materials but does not require the use, creation and/or destruction of embryos or fetal tissue and does not in any way involve creating a cloned being. The oocyte never becomes fertilized and never develops into an embryo. Rather, portions of the oocyte cytoplasm are extracted and combined with the nuclear material of individual mature somatic cells in a manner that precludes embryo formation. Murine, bovine, and human examples of the procedure are demonstrated. Subsequently, the newly constructed P-PNES cells are cultured in vitro and give rise to PNES cells and cell colonies. Methods are described for culturing the P-PNES cells to yield purified PNES cells which have the ability to differentiate into cells derived from mesoderm, endoderm, and ectoderm germ layers. Methods are described for maintaining and proliferating PNES cells in culture in an undifferentiated state. Methods and results are described for analysis and validation of pluripotency of PNES cells including cell morphology, cell surface markers, pluripotent tumor development in SCID mouse, karyotyping, immortality in in vitro culture.
Owner:STEMA

Multipotent stem cells derived from placenta tissue and cellular therapeutic agents comprising the same

InactiveUS20070243172A1Negative immunological responseBiocideArtificial cell constructsGerm layerDisease
The present invention relates to placenta tissue-derived multipotent stem cells and cell therapeutic agents containing the same. More specifically, to a method for producing placenta stem cells having the following characteristics, the method comprising culturing amnion, chorion, decidua or placenta tissue in a medium containing collagenase and bFGF and collecting the cultured cells: (a) showing a positive immunological response to CD29, CD44, CD73, CD90 and CD105, and showing a negative immunological response to CD31, CD34, CD45 and HLA-DR; (b) showing a positive immunological response to Oct4 and SSEA4; (c) growing attached to plastic, showing a round-shaped or spindle-shaped morphology, and forming spheres in an SFM medium so as to be able to be maintained in an undifferentiated state for a long period of time; and (d) having the ability to differentiate into mesoderm-, endoderm- and ectoderm-derived cells. Also the present invention relates to placenta stem cells obtained using the production method. The inventive multipotent stem cells have the ability to differentiate into muscle cells, vascular endothelial cells, osteogenic cells, nerve cells, satellite cells, fat cells, cartilage-forming cells, osteogenic cells, or insuline-secreting pancreatic β-cells, and thus are effective for the treatment of muscular diseases, osteoporosis, osteoarthritis, nervous diseases, diabetes and the like, and are useful for the formation of breast tissue.
Owner:RNL BIO

Sub totipotential stem cell and preparation method and application thereof

The invention discloses a method for preparing a population of?human pluripotent stem cells and the application thereof. The preparation of stem cells is characterized by comprising the following steps: CD151<+>, CD31<->, Sox<2+> pluripotent stem cells are separated and collected from human umbilical cord and or placenta tissues; the cells adhere to grow in a culture vessel under a predetermined condition and expand through passage 20 or above to be still stable in gene expression. The population of cells of this invention do not form teratoma after injection into animals. The human pluripotent stem cells highly express CD151, OCT4 and Sox-2 as specific markers of embryonic stem cells, as well as specific markers of epidermic cells, endothelial cells, thrombocytes, dendritic cells, while lack expression of CD31, CD34, CD45 and HLA-II. The pluripotent stem cells are also characterized as being able to adhere to tissue culture plastic and having the potential to differentiate into three germ layers: endoderm, mesoderm and ectoderm. These pluripotent stem cells are able to be used as carrier cells of gene therapy and for the treatment of diseases caused by cell damage or cell aging. The present invention provides a method of isolating, purifying and culturally expanding of a population of human pluripotent stem cell for preparing the high purity injection preparation. The preparation of stem cells has a good therapeutic effect on the treatment of diseases caused by cell damage or cell aging in animal and human clinical trials. The preparation also has no toxic side effect and no immune rejection.
Owner:BEIJING HEALTH & BIOTECH (H&B) CO LTD

Transgenic cell overlapped vascular inner rack and manufacture method thereof

InactiveCN101269242AAccelerated surface endothelializationPrevent restenosisStentsSurgeryHigh level expressionVascular endothelium
The invention provides an intravascular stent covered by transgene cells, which is characterized in that: a low-temperature plasma treatment layer, an adhesive interstitial substance coat and a cell coat are orderly arranged on the surface of the naked metal stent. The adhesive interstitial substance coat is a protein coat or a peptide sequence coat; the cell coat is obtained by stabilizing transfected cells by target gene. Preparing the intravascular stent includes the following steps: obtaining the target gene; constructing and amplifying the eukaryotic expression carrier of the target gene; obtaining cells; modifying the surface of the metal stent; preparing the adhesive interstitial substance coat; rotating, cultivating, and preparing the intravascular stent covered by transgene cells. On the one hand, by expressing the target gene at high-level, the rehabilitating of the injured endovascular endoderm is enhanced and the multiplication of smooth muscle cells is inhibited; one the other hand, by the multiplication of external-source cells, the surface endothelialization of the intravascular stent is accelerated; the coating is close applied on the surface of the stent, the biocompatibility is fine, and the intravascular stent can be inhibited from turning narrower ultimately.
Owner:CHONGQING UNIV

Multipotent stem cells from the extrahepatic billary tree and methods of isolating same

The present invention relates to a multipotent stem cell, multipotent cell populations, and an enriched multipotent cell population, each found in fetal, neonatal, pediatric, and adult biliary tree tissue and up to 72 hours post mortem (although preferentially, within 10 hours post mortem) and capable of maturing into multiple endodermal tissues that include liver, biliary and pancreatic tissues. The multipotent stem / progenitor cell and cell populations are found in peribiliary glands, and progenitors descending from them are present throughout the biliary tree including in the gallbladder. High numbers of the peribiliary glands are found in the branching locations of the biliary tree such as hilum, common hepatic duct, cystic duct, common duct, common hepato-pancreatic duct and gallbladder. Related multipotent cells, multipotent cell populations and their descendent progenitors are found throughout the biliary tree including in the gall bladder, which does not have peribiliary glands. Compositions comprising same, methods of identifying and isolating same, maintaining same in culture, expanding same in culture and differentiating or lineage restricting the same in vitro or in vivo to hepatic, biliary or pancreatic fates (e.g., as hepatocytes, cholangiocytes, and / or pancreatic islet cells) are also provided. Methods of using the multipotent cells and / or multipotent cell populations are also provided.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products