Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3987 results about "Diffusion layer" patented technology

In electrochemistry, the diffusion layer, according to IUPAC, is defined as the "region in the vicinity of an electrode where the concentrations are different from their value in the bulk solution. The definition of the thickness of the diffusion layer is arbitrary because the concentration approaches asymptotically the value in the bulk solution". The diffusion layer thus depends on the diffusion coefficient (D) of the analyte and for voltammetric measurements on the scan rate (V/s). It is usually considered to be some multiple of (Dt)¹⸍² (where 1/t = scan rate). At slow scan rates, the diffusion layer is large, on the order of micrometers, whereas at fast scan rates the diffusion layer is nanometers in thickness. The relationship is described in part by the Cottrell equation.

MOS type image sensor

A MOS type image sensor has an image area that consists of a matrix of pixels and a peripheral circuitry area that drives the image area. To make the MOS type image sensor finer, each of the pixels consists of a second p-well region having a lower impurity concentration than a first p-well region disposed in the peripheral circuitry area; a photodiode having a first main electrode region made of the second p-well region and a second main electrode region formed as a first n-diffusion layer disposed at the surface of the second p-well region; a read transistor having a first main electrode region made of the first n-diffusion layer, a second main electrode region formed as a second n-diffusion layer disposed at the surface of the second p-well region, a gate insulation film disposed on the surface of the second p-well region between the first and second n-diffusion layers, and a gate electrode disposed on the gate insulation film and connected to a read signal line; and an amplification transistor disposed in a third p-well region, having a gate electrode connected to the second main electrode region of the read transistor, a first main electrode region connected to an output signal line, and a second main electrode region. Since the impurity concentration of the second p-well region is low, scaled design rules are employable without causing "white pixels", sensitivity deterioration, signal read voltage increase, or short-channel effect.
Owner:NORTH PLATE SEMICON LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products