Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

402results about How to "Maximum performance" patented technology

Method for high-performance delivery of web content

The present invention provides a method and apparatus for increasing the performance of world-wide-web traffic over the Internet. A distributed network of specialized nodes of two types is dispersed around the Internet. A web client's requests are directed to a node of the first type chosen to be close to the client, and the client communicates with this node using a standard protocol such as HTTP. This first node receives the request, and communicates the request to a node of the second type chosen to be close to the request's ultimate destination (e.g., a web server capable of generating a response to the request.) The first node communicates the request to the second node using a different, specialized, protocol that has been designed for improved performance and specifically to reduce traffic volume and to reduce latency. The second node receives communication from the first node using this specialized protocol, converts it back to a standard protocol such as HTTP, and forwards the request to the destination computer or server. Responses from the destination to the client take the corresponding reverse route, and also are carried over a specialized protocol between the two nodes. In addition, these nodes can employ other techniques such as web caches that avoid or improve some communication steps. Thus, specialized, proprietary, or complex protocols and techniques can be quickly deployed to enhance web performance without requiring significant changes to the clients or servers.
Owner:AKAMAI TECH INC

Method for high-performance delivery of web content

The present invention provides a method and apparatus for increasing the performance of world-wide-web traffic over the Internet. A distributed network of specialized nodes of two types is dispersed around the Internet. A web client's requests are directed to a node of the first type chosen to be close to the client, and the client communicates with this node using a standard protocol such as HTTP. This first node receives the request, and communicates the request to a node of the second type chosen to be close to the request's ultimate destination (e.g., a web server capable of generating a response to the request.) The first node communicates the request to the second node using a different, specialized, protocol that has been designed for improved performance and specifically to reduce traffic volume and to reduce latency. The second node receives communication from the first node using this specialized protocol, converts it back to a standard protocol such as HTTP, and forwards the request to the destination computer or server. Responses from the destination to the client take the corresponding reverse route, and also are carried over a specialized protocol between the two nodes. In addition, these nodes can employ other techniques such as web caches that avoid or improve some communication steps. Thus, specialized, proprietary, or complex protocols and techniques can be quickly deployed to enhance web performance without requiring significant changes to the clients or servers.
Owner:AKAMAI TECH INC

DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture

A wireless communication device including a radio frequency (RF) circuit, a ZIF transceiver and a baseband processor. The ZIF transceiver includes an RF mixer circuit that converts the RF signal to a baseband input signal, a summing junction that subtracts a DC offset from the baseband input signal to provide an adjusted baseband input signal, and a baseband amplifier that receives the adjusted baseband input signal and that asserts an amplified input signal based on a gain adjust signal. The baseband processor includes gain control logic, DC control logic and a gain interface. The gain control logic receives the amplified input signal, estimates input signal power and asserts the gain adjust signal in an attempt to keep the input signal power at a target power level. The DC control logic estimates an amount of DC in the amplified input signal and provides the DC offset in an attempt to reduce DC in the amplified input signal. The gain interface converts gain levels between the gain control logic and the DC control logic. The RF signal may include in-phase (I) and quadrature (Q) portions, where the RF mixer circuit splits I and Q baseband input signals from the RF signal. Operation is substantially identical for both I and Q channels. The DC control logic operates to remove or otherwise eliminate DC from the received signal that is provided to decoders in the baseband processor.
Owner:M RED INC

Calibrated DC compensation system for a wireless communication device configured in a zero intermediate frequency architecture

A calibrated DC compensation system for a wireless communication device configured in a zero intermediate frequency (ZIF) architecture. The device includes a ZIF transceiver and a baseband processor, which further includes a calibrator that periodically performs a calibration procedure. The baseband processor includes gain control logic, DC control logic, a gain converter and the calibrator. The gain converter converts gain between the gain control logic and the DC control logic. The calibrator programs the gain converter with values determined during the calibration procedure. The gain converter may be a lookup table that stores gain conversion values based on measured gain of a baseband gain amplifier of the ZIF transceiver. The gain control logic may further include a gain adjust limiter that limits change of a gain adjust signal during operation based on a maximum limit or on one or more gain change limits. A second lookup table stores a plurality of DC adjust values, which are added during operation to further reduce DC offset. The calibration procedure includes sampling an output signal for each gain step of the baseband amplifier at two predetermined range values and corresponding DC offsets using successive approximation. The data is used to calculate gain, DC offset and DC differential values, which are used to determine the conversion values programmed into the lookup tables or the gain adjust limiter.
Owner:M RED INC

Architecturally partitioned automatic steering system and method

A system and method for automatically steering a vehicle along an intended path is provided. The system is architecturally partitioned. The partitioned design allows each of the system elements to be designed and maintained independently while allowing variation and flexibility in system configuration. An embodiment of the system elements may comprise a local navigation guidance unit, an external positioning system, a steering controller, and an installation and service computer. Additional elements of an embodiment of the system may comprise a steering position sensor, and at least one steering actuator. The system allows the operator to enter an intended target path and certain vehicle parameters. The local navigation guidance unit receives positional data from an external positioning system, preferably DGPS, indicative of a navigational path traversed by the vehicle. The guidance unit compares the positional data with the intended target path to obtain guidance error and transmits the guidance error to the steering controller. The system allows for determination of the current steering angle and generation of a steering angle adjustment based upon the intended target, the navigational path traversed by the vehicle, the vehicle parameters, the steering angle and the guidance error. The steering angle adjustment is used to actuate a steering mechanism to smoothly guide the vehicle along the intended target path.
Owner:RAVEN INDUSTRIES INC

High-performance location management platform

An apparatus and method for rapid translation of geographic latitude and longitude into any of a number of application-specific location designations or location classifications, including street address, nearest intersection, PSAP (Public Safety Answering Point) zone, telephone rate zone, franchise zone, or other geographic, administrative, governmental or commercial division of territory. The speed of translation meets call-setup requirements for call-processing applications such as PSAP determination, and meets caller response expectations for caller queries such as the location of the nearest commercial establishment of a given type. To complete its translation process in a timely manner, a memory-stored spatial database is used to eliminate mass-storage accesses during operation, a spatial indexing scheme such as an R-tree over the spatial database is used to locate a caller within a specific rectangular area, and an optimized set of point-in-polygon algorithms is used to narrow the caller's location to a specific zone identified in the database. Additional validation processing is supplied to verify intersections or street addresses returned for a given latitude and longitude. Automatic conversion of latitude-longitude into coordinates in different map projection systems is provided.The memory-stored database is built in a compact and optimized form from a relational spatial database as required. The R-tree spatial indexing of the memory-stored database allows for substantially unlimited scalability of database size without degradation of response time. Maximum performance for database retrievals is assured by isolating the retrieval process from all updating and maintenance processes. Hot update of the in-memory database is provided without degradation of response time.
Owner:PRECISELY SOFTWARE INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products