Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1719results about How to "Improve electrochemical stability" patented technology

Light-Emitting Element, Light-Emitting Device, Electronic Appliance, and Lighting Device

Disclosed is a light-emitting element having high emission efficiency, capable of driving at low voltage, and showing a long lifetime. The light-emitting element contains a compound between a pair of electrodes, and the compound is configured to give a first peak of m / z around 202 and a second peak of m / z around 227 in a mass spectrum. The first and second peaks are product ions of the compound and possess compositions of C16H9 and C17H10N, respectively, which are derived from a dibenzo[f,h]quinoline unit.
Owner:SEMICON ENERGY LAB CO LTD

Rechargeable thin film battery and method for making the same

A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.
Owner:TRUSTEES OF TUFTS COLLEGE TUFTS UNIV

High-specific-surface-area boron-doped diamond electrode and preparation method and application thereof

The invention discloses a high-specific-surface-area boron-doped diamond (BDD) electrode which comprises an electrode substrate. A boron-doped diamond layer is arranged on the surface of the electrode substrate. Or, a transition layer is arranged on the surface of the substrate, and then a boron-doped diamond layer is arranged on the surface of the transition layer. Metal particles are distributed in the diamond layer, and tiny holes and / or pointed cones are distributed on the surface of the diamond layer. Compared with a traditional plate electrode, the boron-doped diamond electrode contains a large number of tiny holes and pointed cones and has the extremely high specific surface area, and the large current intensity is provided through the low current intensity; and meanwhile, due to the different electrode configurations of the substrate and modification of surface graphene and / or carbon nano tubs (CNT), the mass transfer process can be greatly improved, the current efficiency and the electrochemical property are greatly improved, and the BDD electrode with high electrocatalytic activity and high using efficiency is prepared. The electrode can be widely applied in the fields of electrochemical wastewater purification treatment, electrochemical biosensors, strong oxidant electrochemical synthesis, electrochemical detection and the like.
Owner:NANJING DAIMONTE TECH CO LTD

High nickel anode material, preparation method thereof and lithium ion battery

ActiveCN105070907AGood capacity and cycle performanceImproved electrochemical stability and safetyCell electrodesSecondary cellsTungstenMagnesium
The invention provides a high nickel anode material, which comprises a base body and a coating layer, wherein aluminum (Al), titanium (Ti), magnesium (Mg), zirconium (Zr), calcium (Ca), zinc (Zn), boron (B), fluorine (F), vanadium (V), strontium (Sr), barium (Ba), yttrium (Y), neodymium (Nd), caesium (Cs), tungsten (W), molybdenum (Mo), ruthenium (Ru), rubidium (Rb) or lanthanides are mingled on the surface of the base body, the coating layer is coated on the surface of the base body, and comprises one or more of the magnesium, the titanium, the zirconium, the fluorine, the boron, the aluminum and phosphate. The elements are mingled on the surface of the base body of the high nickel anode material, the mingled elements can stabilize a surface crystal structure of the base body, remit damage of washing liquid to a material surface structure of the base body, and enable capacity and cycle performance of a lithium ion battery which is prepared through the high nickel anode material to be better. Furthermore, the high nickel anode material is provided with the coating layer, and the coating layer enables the high nickel anode material to separate from an electrolyte part, and improves electrochemical stability and safety of the high nickel anode material. The invention further provides a method for preparing the high nickel anode material and a lithium ion battery.
Owner:湖北容百锂电材料有限公司

Method for preparing composite lithium-ion battery separator through electrostatic spinning/electrostatic spraying

The invention relates to the field of lithium-ion batteries, in particular to a method for preparing a composite lithium-ion battery separator through electrostatic spinning / electrostatic spraying. The method specifically includes the steps of firstly, adding high molecular polymer into an organic solvent, dissolving the high molecular polymer through mechanical stirring to form a transparent solution, and obtaining an electrostatic spinning solution; secondly, mixing inorganic nanometer particles with the high molecular polymer and adding the mixture into the organic solvent, and conducting mechanical stirring to obtain inorganic nanometer particle suspension liquid; thirdly, conducting electrostatic spinning on the spinning solution prepared in the first step to prepare a lower layer nanometer fiber film, and enabling the inorganic nanometer particle suspension liquid prepared in the second step to be deposited on the lower layer nanometer fiber film through electrostatic spraying to obtain an interlayer; finally, receiving an electrostatic spun nanometer fiber layer on an inorganic particle layer to obtain the composite lithium-ion battery separator. The composite lithium-ion battery separator has the high imbibing rate and good electrochemical stability under the room temperature and has good heat shrinkage resistance performance at the same time.
Owner:TIANJIN POLYTECHNIC UNIV

Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same

An organic / inorganic composite separator includes (a) a polyolefin porous substrate having pores; and (b) a porous active layer containing a mixture of inorganic particles and a binder polymer, with which at least one surface of the polyolefin porous substrate is coated, wherein the porous active layer has a peeling force of 5 gf / cm or above, and a thermal shrinkage of the separator after being left alone at 150° C. for 1 hour is 50% or below in a machine direction (MD) or in a transverse direction (TD). This organic / inorganic composite separator solves the problem that inorganic particles in the porous active layer formed on the porous substrate are extracted during an assembly process of an electrochemical device, and also it may prevent an electric short circuit between cathode and anode even when the electrochemical device is overheated.
Owner:TORAY BATTERY SEPARATOR FILM +1

Nitrogen-phosphorus double-doped carbon-coated transition metal diphosphide hydrogen evolution catalyst and preparation method thereof

The invention relates to a nitrogen-phosphorus double-doped carbon-coated transition metal diphosphide hydrogen evolution catalyst and a preparation method thereof. The nitrogen-phosphorus double-doped carbon-coated transition metal diphosphide is characterized in that the structural formula is MP2@NPC, a transition metal diphosphide MP2 is used as a core, nitrogen-phosphorus double-doped carbon NPC is used as a shell so that a core-shell structure is formed, the diphosphide has a nano-particle structure, the particle size is less than 50nm and good crystallinity is obtained. The composite catalyst has the electrocatalytic hydrogen evolution activity similar to that of the commercial platinum carbon and catalyst stability better than that of the commercial catalyst. The catalyst has a wide application prospect.
Owner:WUHAN UNIV OF TECH

Rechargeable aluminum ion cell and preparation method thereof

The invention discloses a rechargeable aluminum ion cell and a preparation method thereof and belongs to the field of energy reutilization. The cell comprises an anode, a cathode, a liquefied aluminum ion electrolyte and a diaphragm material, wherein the anode is made of graphite structure carbon material; the cathode is made of highly pure aluminum; the liquefied aluminum ion electrolyte is formed by mixing anhydrous aluminum chloride and 3-methyl imidazole compound; the molar ratio between the anhydrous aluminum chloride and the 3-methyl imidazole compound is from 1.1:1 to 1.6:1. The preparation process of the cell comprises the following steps: processing the graphite structure carbon material into laminar shapes; fixing the anode material with inertial metal foil as a current collector and covering the anode with the diaphragm material; washing highly pure aluminum cutting piece as the cathode; preparing the liquefied aluminum ion electrolyte which contains A13 plus ion capable of freely moving. The anode, the cathode and the liquefied aluminum ion electrolyte are assembled in a glove box to form the cell; the cell has the characteristics of high capacity and good circulating stability and is applicable to multiple fields such as electronic industry, communication industry and electric automobile.
Owner:UNIV OF SCI & TECH BEIJING +1

Graphene-cladding manganese dioxide combination electrode material and method for producing same

A graphene-cladding manganese dioxide combination electrode material and a method for producing the same, belonging to the technical field of electronic functional materials, the graphene-cladding manganese dioxide combination electrode material comprises nano manganese dioxide particles and graphene cladded with manganese dioxide particles, wherein the mass ratio of graphene and the nano manganese dioxide particles is 1:(1.25-10). The method comprises the following steps: preparing the nano manganese dioxide particles and graphite oxide respectively, and mixing and ultrasonically dispersing to obtain the graphene-cladding manganese dioxide dispersing agent, finally, reducing the graphite oxide to obtain the graphene-cladding manganese dioxide combination electrode material. The graphene is used to clad the manganese dioxide, so the electrical conductivity and cycling stability of the electrode material parts can be improved; and meanwhile, the existence of the manganese dioxide particles also effectively prevents the graphene from reunion, so the specific capacity of the electrode material of a supercapacitor is obviously increased. The method has a simple technology, reaction products are easy to control, the purity is high, and the produced combination electrode material is suitable for producing an electrode plate of the supercapacitor.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Nanostructured quasi-solid electrolyte applied to lithium ion batteries or lithium sulfur batteries and preparation method and application thereof

The invention discloses a nanostructured quasi-solid electrolyte applied to lithium ion batteries or lithium sulfur batteries and a preparation method and application thereof. The nanostructured quasi-solid electrolyte is a macro solid-state electrolyte material which is formed by an inorganic-organic hybrid framework material adsorbing ion conductive agent. The preparation method of the nanostructured quasi-solid electrolyte is as follows: in protective atmosphere, the inorganic-organic hybrid framework material is soaked in the ion conductive agent and sufficiently mixed, and redundant solvent is then volatilized. The prepared nanostructured quasi-solid electrolyte with high lithium ion conductivity can be substituted for both organic electrolyte and diaphragms in conventional lithium ion batteries, and thereby safety problems caused by the leakage of the organic electrolyte can be effectively prevented; a lithium battery assembled from the electrolyte can use a metal lithium plate as a cathode.
Owner:CENT SOUTH UNIV

Fe, Ni and N three-doped carbon nanotube coated type FeNi@NCNT catalyst as well as preparation method and application thereof

The invention discloses a Fe, Ni and N three-doped carbon nanotube coated type FeNi@NCNT catalyst as well as a preparation method and application thereof, and belongs to the fields of energy materialsand electrochemistry. The catalyst is prepared by using dicyandiamide as a C source and N source and ammonium ferric citrate and NiCl2.6H2O as metal sources, adopting one pot method and performing pyrolysis in two steps; and a plurality of Fe and Ni metal particles in the catalyst are uniformly wrapped in walls of ''bamboo-like'' N-doped carbon nanotubes, and a small number of the particles are distributed at the tip ends of the carbon nanotubes. Compared with a common metal alloy oxygen reduction reaction and oxygen evolution reaction bifunctional catalyst, the catalyst disclosed by the invention exhibits good oxygen evolution reaction activity and stability under alkaline conditions; the preparation method is simple, and raw materials used in the method have low costs and wide sources;and the catalyst can be widely used in the fields of proton exchange membrane fuel cells, electrolyzed water, metal-air batteries and the like, and has higher practical value.
Owner:DALIAN UNIV OF TECH

Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same

An organic / inorganic composite separator includes (a) a polyolefin porous substrate having pores; and (b) a porous active layer containing a mixture of inorganic particles and a binder polymer, with which at least one surface of the polyolefin porous substrate is coated, wherein the porous active layer has a peeling force of 5 gf / cm or above, and a thermal shrinkage of the separator after being left alone at 150° C. for 1 hour is 50% or below in a machine direction (MD) or in a transverse direction (TD). This organic / inorganic composite separator solves the problem that inorganic particles in the porous active layer formed on the porous substrate are extracted during an assembly process of an electrochemical device, and also it may prevent an electric short circuit between cathode and anode even when the electrochemical device is overheated.
Owner:TORAY BATTERY SEPARATOR FILM +1

Silicon carbon composite anode material of lithium-ion battery, method for preparing silicon carbon composite anode material, and lithium-ion battery

The invention provides a silicon carbon composite anode material of a lithium-ion battery, a method for preparing the silicon carbon composite anode material, and the lithium-ion battery. The silicon carbon composite anode material comprises two groups of substances, such as (a) silicon powder, silicon oxide (SiO) powder or a mixture of the silicon powder and the SiO powder, and (b) graphite and expanded graphite. The method for preparing the silicon carbon composite anode material comprises the following steps of: mixing components (a) and components (b); placing a mixture into a ball mill; and ball-milling for 1 to 24 h at the rotation speed of 100 to 600 r / min. By the method, the preparation process is simple and cost is low. The prepared anode material has excellent conducting performance. Correspondingly, the lithium-ion battery is high in specific capacity and good in cycle performance.
Owner:CHERY AUTOMOBILE CO LTD

Preparation method of supercapacitor electrode material NiCo2O4

The invention relates to a preparation method of supercapacitor electrode material NiCo2O4. The preparation method comprises: (1) hexahydrated nickel nitrate Ni (NO3) 2 6H2O, hexahydrated cobalt nitrate Co (NO3) 2 6H2O and ureophil in a molar ratio of 1:2:1-10 are added to a mixed solution of ethanol and water, stirred and dissolved so as to obtain a mixed solution; and (2) a hydrothermal reaction is conducted to the mixed solution, the reaction temperature is from 90 DEG C and 200 DEG C, the reaction time is from 3h to 48 h, the mixed solution is cooled to the room temperature so as to obtain the NiCo2O4 by centrifuging, and then the NiCo2O4 is washed, dried and calcined so that the material NiCo2O4 is obtained. The materials obtained through the preparation method are high in specific capacitance and good in electrochemical stability and are excellent supercapacitor electrode materials. The preparation method has the advantages of being simple, green and environment-friendly and low in cost.
Owner:DONGHUA UNIV

Compound for organic optoelectronic device, organic light emitting diode and display device

The present invention relates to a compound for an organic optoelectronic device, organic light emitting diode and display device. The compound for an organic optoelectronic device may be represented by the following Chemical Formulas 1 to 4 and have excellent electrochemical and thermal stability and thus, provide an organic photoelectric device with excellent life-span characteristics and high luminous efficiency at a low driving voltage. The above Chemical Formulas 1 to 4 are the same as described in the specification.
Owner:CHEIL IND INC

Preparation method for silicon-carbon composite material, prepared silicon-carbon composite material, lithium ion battery anode containing silicon-carbon composite material and battery

ActiveCN102437318AIncrease the embedding positionImproved silicon volume effectSecondary cellsNon-aqueous electrolyte accumulator electrodesCarbon compositesSilicon monoxide
The invention provides a preparation method for a silicon-carbon composite material, the prepared silicon-carbon composite material, a battery anode prepared from the material and a lithium ion battery. The preparation method comprises the following steps of: directly mixing free phenol, free aldehyde and silicon monoxide, performing polymerization reaction under certain conditions to obtain a mixture of a phenolic resin and the silicon monoxide which is coated by the phenolic resin, and performing thermal treatment and corrosion to obtain the silicon-carbon composite material with a core shell structure. The preparation method is simple. The prepared silicon-carbon composite material has the advantages of high specific capacity and high cycle performance.
Owner:CHERY AUTOMOBILE CO LTD

Phosphorus-containing crosslinked gel polymer electrolyte and on-site thermal-polymerization preparation method and application thereof

The invention belongs to the technical field of gel polymer electrolytes and particularly discloses a phosphorus-containing crosslinked gel polymer electrolyte and an on-site thermal-polymerization preparation method and application thereof. The preparation method comprises the steps of preparing the following raw materials, of which the total weight percent is 100%: 5-15% of polymerization monomers, 3-10% of crosslinker, 0.01-1.0% of thermal initiator and 75-90% of lithium-ion battery liquid electrolyte, uniformly mixing, and then, reacting for 20-100 minutes at the temperature of 75-150 DEG C under the protection of inert gas, thereby obtaining the phosphorus-containing crosslinked gel polymer electrolyte. The invention further discloses application of the phosphorus-containing crosslinked gel polymer electrolyte in the preparation of solid lithium-ion batteries. The invention provides novel phosphates and / or phosphonates, containing double bonds, which serve as monomers of the gel polymer electrolyte, and the phosphorus-containing crosslinked gel polymer electrolyte designed and synthesized from the monomers has the advantages of simple and convenient preparation method, high ionic conductivity, high thermal stability and good electrochemical stability, so that phosphorus-containing crosslinked gel polymer electrolytes with relatively good stability are provided for the practical application of the solid lithium-ion batteries and high-power lithium-ion batteries.
Owner:ZHENGZHOU UNIV

Electrolyte Compositions, Methods Of Making And Battery Devices Formed There From

The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
Owner:ESIONIC

Method for preparing polyvinylidene fluoride (PVDF) porous nanofiber membrane with high ion migration number

The invention relates to a method for preparing a polyvinylidene fluoride (PVDF) porous nanofiber membrane with a high ion migration number. The method is characterized by comprising the following steps of: 1, adding a single-walled carbon nanotube and lithium salts into an organic solvent to form a mixed solution; adding polyvinylidene fluoride, heating, stirring and dissolving, cooling to the room temperature, adding polyvinyl pyrrolidone, stirring and dissolving to obtain a spinning solution; and 2, performing electrostatic spinning on the obtained spinning solution to obtain a fiber membrane; impregnating the obtained fiber membrane in ethanol for 1-2 hours to obtain the PVDF porous nanofiber membrane with the high ion migration number. The PVDF porous nanofiber membrane prepared with the method is used as a lithium ion battery isolation membrane, and maintains good mechanical strength at the same time of maintaining high lithium ion migration number, high liquid absorption rate and good electrochemical stability in a range of from 20 to 70 DEG C.
Owner:DONGHUA UNIV

Separator including porous coating layer and electrochemical device including the same

Disclosed is a separator. The separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer formed on at least one surface of the non-woven fabric substrate. The porous coating layer is composed of a mixture of filler particles and a binder polymer. The filler particles include conductive positive temperature coefficient (PTC) particles composed of a mixture of conductive particles and a low melting point resin having a melting point lower than that of the non-woven fabric substrate. Due to the presence of the conductive PTC particles, the porous coating layer can be imparted with a shutdown function against thermal runaway. In addition, the porous coating layer exhibits appropriate electrical conductivity. Therefore, the separator is suitable for use in a high-capacity electrochemical device.
Owner:TORAY BATTERY SEPARATOR FILM +1

Aluminium ion battery and preparation method thereof

The invention relates to an aluminium ion battery and a preparation method thereof and belongs to the field of aluminium ion batteries and preparation thereof. The aluminium ion battery comprises a positive electrode, a negative electrode and an aluminium ion electrolyte, wherein the positive electrode is made of transition metal oxide; the negative electrode is made of high purity aluminium; the battery comprises a diaphragm material when the aluminium ion electrolyte is in a liquid state. Since abundant aluminium elements are stored, the cost for the ion battery is greatly reduced; the safety performance is improved; the transition metal oxide is applicable to hypervalent ion batteries due to relative stability under the variable valence states and different valence states. The ion liquid serves as the electrolyte for the hypervalent ion battery, so that aluminium ion is high in conductivity, good in heat stability, broad in electrochemical window and high in chemical stability and almost incapable of reacting with the positive electrode materials, the negative electrode materials, a current collector, a binder and a diaphragm in a battery system and capable of maintaining the liquid state in a board temperature range. The aluminium ion battery can be applied to various fields, such as electronic industries, communication industries and electric vehicles and the like.
Owner:UNIV OF SCI & TECH BEIJING

Metal-organic framework nanosheet as well as preparation method and application thereof

The invention discloses a metal-organic framework nanosheet as well as a preparation method thereof and application thereof in oxygen evolution reaction of electrolysis water. According to the preparation method, the energy consumption is low, the reaction is rapid, reaction conditions are mild, the thickness of the obtained metal-organic framework nanosheet is 3nm-5nm, the specific surface area can reach 450m<2>.g<1>, and the alkali resistance and the chemical stability are good. The metal-organic framework nanosheet can be prepared into an electrolysis water oxygen production electrode, and a particular ultra-thin sheet structure can be in well contact with the surface of the electrode, so that influences on mass transfer, diffusion and material resistance in the electrochemical oxygen production process are overcome, the initial oxidation potential can reach 1.42V, and the overpotential at 10mA / cm<2> can reach 250mV. By virtue of a 24-hour test, the oxygen production effect is still maintained above 99.6%, the activity, stability and price of the metal-organic framework nanosheet are superior to those of traditional noble metal RuO2, and extremely high actual application value is achieved.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Electrolyte for lithium-ion battery made of ternary cathode materials and lithium-ion battery made of ternary cathode materials

The invention relates to the technical field of lithium-ion batteries, in particular to electrolyte for a lithium-ion battery made of ternary cathode materials and the lithium-ion battery made of the ternary cathode materials. The electrolyte for the lithium-ion battery comprises a non-aqueous organic solvent, lithium salt and additives, and the additives comprise fluoroethylene carbonate, sulfur-containing organic matters and fluoro-ether. By comparison with the prior art, due to the synergistic effect of the three additives including fluoroethylene carbonate, sulfur-containing organic matters and fluoro-ether, the lithium-ion battery made of the ternary cathode materials has excellent cycle performance and high-temperature storage performance under the high-potential condition of 4.35 V or higher, thus, the lithium-ion battery has a wide application prospect in a ternary battery system.
Owner:DONGGUAN SHANSHAN BATTERY MATERIALS

Fully solid-state lithium secondary battery electrolyte material, preparation method thereof and fully solid-state lithium secondary battery

ActiveCN102544580AClose contactLower Boundary ResistanceSecondary cellsDopantPhysical chemistry
The invention provides a fully solid-state lithium secondary battery electrolyte material, which contains Li2S, a first sulfide, a second sulfide and a dopant, wherein the first sulfide is GeS and / or GeS2; the second sulfide is one or more of FeS, FeS2, SiS2, P2S5, B2S3, CeS2 and Al2S3; and the dopant is a lithium salt or an oxide capable of forming raw acid. According to the fully solid-state lithium secondary battery electrolyte material, the lithium ion conductivity of the fully solid-state lithium secondary battery electrolyte material at room temperature is increased by using the first sulfide, the second sulfide and the dopant. Experiments show that the lithium ion conductivity of the fully solid-state lithium secondary battery electrolyte material reaches up to 10<-3> S.cm<-1> at the room temperature, the conductivity is better, and the application is facilitated. In addition, the lithium ion conductivity of the fully solid-state lithium secondary battery electrolyte material has better electrochemical stability. The invention provides a preparation method of the lithium ion conductivity of the fully solid-state lithium secondary battery electrolyte material and a fully solid-state lithium secondary battery.
Owner:ZHEJIANG FUNLITHIUM NEW ENERGY TECH CO LTD

Solid polymer electrolyte added with high-concentration lithium salt and preparation method thereof

The invention discloses a solid polymer electrolyte added with a high-concentration lithium salt. The solid polymer electrolyte comprises a lithium salt and solid polycarbonate, wherein the lithium salt is dispersed in a substrate of the solid polycarbonate; and the solid polymer electrolyte comprises 40-90 percent by weight of lithium salt. The solid polymer electrolyte is easy to prepare, and has high room-temperature conductivity, high electrochemical performance and high interface stability.
Owner:HARBIN INST OF TECH WUXI RES INST OF NEW MATERIALS +1

Ultraviolet-curing and semi-interpenetrating network-structure polycarbonate-based solid-state polymer electrolyte and preparation method thereof

The invention discloses an ultraviolet-curing and semi-interpenetrating network-structure polycarbonate-based solid-state polymer electrolyte and a preparation method thereof. The ultraviolet-curing and semi-interpenetrating network-structure polycarbonate-based solid-state polymer electrolyte is characterized in that a crosslinking agent is automatically cross-linked to form a framework, polycarbonate is taken as a solid-state polymer substrate uniformly filled in the framework, a lithium salt is dispersed in the solid-state polymer substrate, the weight ratio of the lithium salt and the polycarbonate is (4:6)-(9:1), and the crosslinking agent accounts for 5-50% of total weight of the solid-state polymer electrolyte. The solid-state polymer electrolyte is simple in preparation method, high in room-temperature electrical conductivity and good in electrochemical and interface stability, can be self-supported and can be used as an electrolyte of a lithium ion battery, and the oxygenolysis potential is larger than 4.5V.
Owner:HARBIN INST OF TECH WUXI RES INST OF NEW MATERIALS +1

Lithium-sulfur battery

The invention discloses a lithium-sulfur battery. The lithium-sulfur battery comprises three-dimensional porous graphene covalence fixing nanometer lithium sulfide as a composite positive electrode, a polyolefin membrane coated with graphene oxide as a modified membrane, and a lithium sheet negative electrode and an electrolyte which are generally adopted. The particle size of lithium sulfide in the composite positive electrode is between 1 nm and 100 nm, and the lithium sulfide is combined with oxygen-containing functional groups on the surface of three-dimensional porous graphene in the form of a C-O-S covalent bond. The modified membrane is prepared from graphene oxide with the thickness of 0.1 to 10 microns uniformly deposited on the surface of a traditional polyolefin membrane; and the graphene oxide can be coated on both sides of the polyolefin membrane, and can also be coated on the side facing the lithium sulfide positive electrode when the battery is assembled. According to the lithium-sulfur battery disclosed by the invention, the dissolution of the sulfur positive electrode can be effectively prevented, the shuttle effect is inhibited, the overpotential of the battery is reduced, the structural damage generated by positive electrode volume expansion is avoided, and the rate characteristic and cycle performance of the lithium-sulfur battery are substantially improved.
Owner:SHANGHAI UNIV

Conductive ceramic composite diaphragm and solid-state battery

The invention relates to a conductive ceramic composite diaphragm and a solid-state battery. The conductive ceramic composite diaphragm comprises a porous base membrane and a conductive ceramic composite coating layer which is coated on one side or two sides of the porous base membrane, wherein the conductive ceramic composite coating layer comprises the following components based on the total weight thereof: 5-80wt% of an organic polymer, 10-85wt% of a nano inorganic solid electrolyte, 1-20wt% of high-molecular grafted modified ceramic, 1-12wt% of a binder and 0.1-0.5wt% of a wetting agent.
Owner:NINGDE ZHUOGAO NEW MATERIAL TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products