Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

165 results about "Spin injection" patented technology

Magneto-resistance effect element and magnetic memory

It is possible to reduce a current required for spin injection writing. A magneto-resistance effect element includes: a first magnetization pinned layer; a magnetization free layer; a tunnel barrier layer; a second magnetization pinned layer whose direction of magnetization is pinned to be substantially anti-parallel to the direction of magnetization of the first magnetization pinned layer, and; a non-magnetic layer. When the second magnetization pinned layer is made of ferromagnetic material including Co, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Zr, Hf, Rh, Ag, and Au; when the second magnetization pinned layer is made of ferromagnetic material including Fe, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Rh, Pt, Ir, Al, Ag, and Au; and when the second magnetization pinned layer is made of ferromagnetic material including Ni, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Zr, Hf, Au, and Ag.
Owner:KK TOSHIBA

CoFe/Ni Multilayer film with perpendicular anisotropy for microwave assisted magnetic recording

A spin transfer oscillator with a seed / SIL / spacer / FGL / capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1 / A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed / FGL / spacer / SIL / capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1 / A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1 / A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
Owner:HEADWAY TECH INC

MgO-based tunnel spin injectors

A MgO tunnel barrier is sandwiched between semiconductor material on one side and a ferri- and / or ferromagnetic material on the other side to form a spintronic element. The semiconductor material may include GaAs, for example. The spintronic element may be used as a spin injection device by injecting charge carriers from the magnetic material into the MgO tunnel barrier and then into the semiconductor. Similarly, the spintronic element may be used as a detector or analyzer of spin-polarized charge carriers by flowing charge carriers from the surface of the semiconducting layer through the MgO tunnel barrier and into the (ferri- or ferro-) magnetic material, which then acts as a detector. The MgO tunnel barrier is preferably formed by forming a Mg layer on an underlayer (e.g., a ferromagnetic layer), and then directing additional Mg, in the presence of oxygen, towards the underlayer.
Owner:IBM CORP

Magnetoresistive element and magnetoresistive random access memory including the same

The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
Owner:KIOXIA CORP

Spin injection device, magnetic device using the same, magnetic thin film used in the same

A spin injection device capable of spin injection magnetization reversal at low current density, a magnetic apparatus using the same, and magnetic thin film using the same, whereby the spin injection device (14) including a spin injection part (1) comprising a spin polarization part (9) including a ferromagnetic fixed layer (26) and an injection junction part (7) of nonmagnetic layer, and a ferromagnetic free layer (27) provided in contact with the spin injection part (1) is such that in which the nonmagnetic layer (7) is made of either an insulator (12) or a conductor (25), a nonmagnetic layer (28) is provided on the surface of the ferromagnetic free layer (27), electric current is flown in the direction perpendicular to the film surface of the spin injection device (14), and the magnetization of the ferromagnetic free layer (27) is reversed. This is applicable to such various magnetic apparatuses and magnetic memory devices as super gigabit large capacity, high speed, non-volatile MRAM and the like.
Owner:JAPAN SCI & TECH CORP

Non-magnetic semiconductor spin transistor

A nonmagnetic semiconductor device which may be utilized as a spin resonant tunnel diode (spin RTD) and spin transistor, in which low applied voltages and / or magnetic fields are used to control the characteristics of spin-polarized current flow. The nonmagnetic semiconductor device exploits the properties of bulk inversion asymmetry (BIA) in (110)-oriented quantum wells. The nonmagnetic semiconductor device may also be used as a nonmagnetic semiconductor spin valve and a magnetic field sensor. The spin transistor and spin valve may be applied to low-power and / or high-density and / or high-speed logic technologies. The magnetic field sensor may be applied to high-speed hard disk read heads. The spin RTD of the present invention would be useful for a plurality of semiconductor spintronic devices for spin injection and / or spin detection.
Owner:UNIV OF IOWA RES FOUND

Spin-injection magnetoresistance effect element

The present invention provides a spin-injection magnetoresistance effect element that can avoid use of a large writing current and allows use of a large reading current. The spin-injection magnetoresistance effect element includes (A) a magnetization reversal layer that has a first face and a second face and stores information, (B) a first magnetization reference layer that is disposed near one end of the magnetization reversal layer with the intermediary of a first nonmagnetic film between the layers, and is magnetized in a first direction, (C) a second magnetization reference layer that is disposed near the other end of the magnetization reversal layer with the intermediary of a second nonmagnetic film between the layers, and is magnetized in a second direction that is the opposite direction of the first direction, (D) a first electrode that is electrically coupled to the first magnetization reference layer, (E) a second electrode that is electrically coupled to the second magnetization reference layer, and (F) a third electrode that is disposed in a manner of facing the second face of the magnetization reversal layer with an insulating film between the third electrode and the magnetization reversal layer.
Owner:SONY CORP

Nonvolatile semiconductor memory device

Source lines for a spin injection magnetic memory cell are arranged parallel to word lines for executing writing / reading of data multiple bits at a time. In a write operation, a source line potential changes in a predetermined sequence such that the source line commonly connected to a plurality of selected memory cells is set to pass a current only in one direction in each stage of the operation sequence. For the data write sequence, a current is caused to flow through memory cells according to write data sequentially, or the memory cell has a resistance state set to an initial resistance state before writing, and then changed to a state according to the write data Fast writing can be achieved in the magnetic memory without increasing a memory cell layout area.
Owner:RENESAS ELECTRONICS CORP

Assisting FGL oscillations with perpendicular anisotropy for MAMR

A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer / spin injection layer (SIL) / spacer / PMA layer 1 / FGL / spacer / PMA layer 2 / capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer / SIL / spacer / PMA assist 1 / FGL / spacer / PMA assist 2 / capping layer configuration. SIL and PMA assist layers are laminates of (CoFe / Ni)x or the like.
Owner:HEADWAY TECH INC

Assisting FGL oscillations with perpendicular anisotropy for MAMR

A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer / spin injection layer (SIL) / spacer / PMA layer 1 / FGL / spacer / PMA layer 2 / capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer / SIL / spacer / PMA assist 1 / FGL / spacer / PMA assist 2 / capping layer configuration. SIL and PMA assist layers are laminates of (CoFe / Ni)x or the like.
Owner:HEADWAY TECH INC

Memory write circuit

A design for a memory array that uses bi-directional write currents and that avoids switched ground connections for memory cells, thereby reducing signal loss and noise problems is described. Positive and negative current sources are provided to supply the bi-directional current that is used to write to a memory cell. These current sources may be selectively connected to bit lines that are electrically connected to the memory cells. Applying a positive current, from the positive current source, through a memory cell writes a “1”, and applying a negative current, from the negative current source, through a memory cell writes a “0”. Use of both a positive and a negative current source enables writing to the memory cells without relying on a switched ground connection to provide bi-directional current. This permits a ground connection of each memory cell to be connected to a fixed ground. An example in which this design is used with a spin injection magneto-resistive random access memory (MRAM) device is shown.
Owner:INFINEON TECH AG +1

Magnetoresistive element and magnetoresistive random access memory including the same

The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
Owner:KIOXIA CORP

Magneto-resistance effect element and magnetic memory

It is possible to reduce a current required for spin injection writing. A magneto-resistance effect element includes: a first magnetization pinned layer; a magnetization free layer; a tunnel barrier layer; a second magnetization pinned layer whose direction of magnetization is pinned to be substantially anti-parallel to the direction of magnetization of the first magnetization pinned layer, and; a non-magnetic layer. When the second magnetization pinned layer is made of ferromagnetic material including Co, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Zr, Hf, Rh, Ag, and Au; when the second magnetization pinned layer is made of ferromagnetic material including Fe, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Rh, Pt, Ir, Al, Ag, and Au; and when the second magnetization pinned layer is made of ferromagnetic material including Ni, material for the non-magnetic layer is metal including at least one element selected from the group consisting of Zr, Hf, Au, and Ag.
Owner:KK TOSHIBA

Magnetic memory device and method for fabricating the same

The magnetic memory device includes a magnetic shield film 48, and a magnetoresistive effect element 62 formed over the magnetic shield film 48 and including a magnetic layer 52, a non-magnetic layer 54 and a magnetic layer 56, in which a magnetization direction of the first magnetic layer or the second magnetic layer is reversed by spin injection, and a second magnetic shield film 68 formed over the side wall of the magnetoresistive effect element 62. Thus, the arrival of the leakage magnetic field from the interconnection near the magnetoresistive effect element 62 can be effectively prevented.
Owner:FUJITSU LTD

Spin injection magnetic domain wall displacement device and element thereof

A spin injection magnetic domain wall displacement device has a plurality of spin injection magnetic domain wall displacement elements. Each element includes a magnetic domain wall displacement layer having a magnetic domain wall, and a first, second, and third magnetic layer groups each having a ferromagnetic layer. The first, second, and third magnetic layer groups are disposed in the order on the same side of the magnetic domain wall displacement layer. The magnetic domain wall is displaceable by flowing electrons between the first and third magnetic layer groups. The position of the magnetic domain wall in the magnetic domain wall displacement layer is detectable based on the difference in the electrical resistance across the second and first or third magnetic layer groups. The magnetic domain wall displacement layer is in antiferromagnetic coupling with the first magnetic layer group, and in antiferromagnetic or ferromagnetic coupling with the third magnetic layer group. The element enables detection of displacement of the magnetic domain wall by measuring the change in the electric resistance.
Owner:FUJI ELECTRIC CO LTD

Spin-injection magnetic random access memory

A spin-injection magnetic random access memory according to an embodiment of the invention includes a magnetoresistive element having a magnetic fixed layer whose magnetization direction is fixed, a magnetic recording layer whose magnetization direction can be changed by injecting spin-polarized electrons, and a tunnel barrier layer provided between the magnetic fixed layer and the magnetic recording layer, a bit line which passes spin-injection current through the magnetoresistive element, the spin-injection current being used for generation of the spin-polarized electrons, a writing word line through which assist current is passed, the assist current being used for the generation of an assist magnetic field in a magnetization easy-axis direction of the magnetoresistive element, and a driver / sinker which determines a direction of the spin-injection current and a direction of the assist current.
Owner:KK TOSHIBA

Spin-injection magnetic random access memory

A spin-injection magnetic random access memory of an aspect of the present invention includes a magnetoresistive element, a unit which writes data into the magnetoresistive element by use of spin-polarized electrons generated by a spin-injection current and which applies, to the magnetoresistive element, a magnetic field of a direction of a hard magnetization of the magnetoresistive element during the writing.
Owner:KK TOSHIBA

Method of using spin injection device

A spin injection device capable of spin injection magnetization reversal at low current density, a magnetic apparatus using the same, and magnetic thin film using the same, whereby the spin injection device (14) including a spin injection part (1) comprising a spin polarization part (9) including a ferromagnetic fixed layer (26) and an injection junction part (7) of nonmagnetic layer, and a ferromagnetic free layer (27) provided in contact with the spin injection part (1) is such that in which the nonmagnetic layer (7) is made of either an insulator (12) or a conductor (25), a nonmagnetic layer (28) is provided on the surface of the ferromagnetic free layer (27), electric current is flown in the direction perpendicular to the film surface of the spin injection device (14), and the magnetization of the ferromagnetic free layer (27) is reversed. This is applicable to such various magnetic apparatuses and magnetic memory devices as super gigabit large capacity, high speed, non-volatile MRAM and the like.
Owner:JAPAN SCI & TECH CORP

Spin-injection magnetic random access memory

A spin-injection magnetic random access memory of an aspect of the present invention includes a magnetoresistive element, a unit which writes data into the magnetoresistive element by use of spin-polarized electrons generated by a spin-injection current and which applies, to the magnetoresistive element, a magnetic field of a direction of a hard magnetization of the magnetoresistive element during the writing.
Owner:KK TOSHIBA

Spin-injection device and magnetic device using spin-injection device

InactiveUS20060022220A1Large output resistanceLarge signal voltageNanomagnetismNanoinformaticsElectrical conductorCharge-carrier density
A first and a second tunnel junctions (2 and 3) which have a common electrode composed of a nonmagnetic conductor (4) and each of which has a counterelectrode composed of a ferromagnet (6, 8) are disposed spaced apart from each other by a distance that is shorter than a spin diffusion length of the nonmagnetic conductor (4) wherein the first tunnel junction (2) acts to inject spins from the ferromagnet (6) into the nonmagnetic conductor (4) and the second tunnel junction (3) serves to detect, between the ferromagnetic metal (8) and the nonmagnetic conductor (4), a voltage that accompanies spin injection of the first tunnel junction (2) and wherein the nonmagnetic conductor (4) is a nonmagnetic conductor, such as a semiconductor or a semimetal, that is lower in carrier density than a metal. The common electrode alternatively may be composed of a superconductor (4′). A spin injection device thus provided can exhibit a large signal voltage with low current and under low magnetic field and can be miniaturized in device size. Magnetic apparatuses utilizing such a spin injection device are also provided.
Owner:JAPAN SCI & TECH CORP

Semiconductor memory device and manufacturing method for semiconductor memory device

A channel layer is deposited on a first impurity layer, a second impurity layer is deposited on the channel layer, a gate electrode is placed to surround a circumference of the channel layer with a gate insulating film interposed therebetween, a spin-injection magnetization-reversal element is deposited on the second impurity layer, a bit line is placed on the spin-injection magnetization-reversal element, and a word line is placed on the bit line to be electrically connected to the gate electrode.
Owner:KIOXIA CORP

CoFe/Ni Multilayer film with perpendicular anistropy for microwave assisted magnetic recording

A spin transfer oscillator with a seed / SIL / spacer / FGL / capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1 / A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed / FGL / spacer / SIL / capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1 / A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1 / A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
Owner:HEADWAY TECH INC

Magnetic recording head and magnetic recording/reproducing apparatus

In high frequency magnetic assisted recording technique, a spin torque oscillator that stably oscillates at a low current and a magnetic recording head with high recording density are provided. In a magnetic recording head including an oscillator that generates a high frequency magnetic field, a spin injection layer structure of two laminated magnetic layers which are coupled to be anti-parallel is adopted. A product Ms×t of the saturated magnetization Ms and the film thickness t of the first magnetic layer close to a field generation layer is smaller than a product Ms×t of the second magnetic layer remote from the field generation layer.
Owner:HITACHI LTD

Magnetic head and magnetic recording apparatus

Embodiments of the present invention provide an accumulation element with high resolving power and high output suitable for magnetic recording and reproducing at high recording density. According to one embodiment, a plurality of spin injection parts and are provided to increase the total amount of spin electrons. The spin accumulation element is composed of a non-magnetic conductor, a first magnetic conductor, a second magnetic conductor, and a third magnetic conductor, each of which are in contact with the non-magnetic conductor through the tunneling junction. An output voltage due to the spin accumulation effect is detected as a potential difference between the non-magnetic conductor and the third magnetic conductor. The first magnetic conductor of the first spin injection part is fixed by a first antiferromagnetic conductor and the second magnetic conductor of the second spin injection part is fixed by a second antiferromagnetic conductor so that their directions of magnetization are anti-parallel to each other.
Owner:WESTERN DIGITAL TECH INC

Multi-valued data recording spin injection maganetization reversal element and device using the element

A spin injection magnetization reversal device is disclosed which inhibits an increase in resistance to enable multi-valued data recording. A ferromagnetic fixed layer and n groups each including a ferromagnetic free layer and an isolation layer are disclosed. The groups are disposed from the group including the first ferromagnetic free layer provided on the ferromagnetic fixed layer to the group including the n-th ferromagnetic free layer in the order. Each of the ferromagnetic free layers is preferably formed of one of a CoCrPt alloy, a CoCr alloy and a CoPt alloy with Pt or Cu concentration therein made monotonically decreased from the concentration in the first ferromagnetic free layer to that in the n-th ferromagnetic free layer.
Owner:FUJI ELECTRIC CO LTD

GaN base spinning LED and preparation method thereof

InactiveCN101350385ASimple manufacturing methodSpin injection efficiency probeSemiconductor devicesOhmic contactSpins
The invention provides a GaN group spin luminescent diode (Spin-LED), which is formed form orderly arranging the following structures on a conducting substrate: a P type ohmic contact electrode, a P type GaN layer, an InGaN / GaN multiple quantum well active layer, a N type GaN layer, an ITO magnetic layer which is doped with transient metallic elements, and a N type ohmic contact electrode, wherein the GaN group Spin-LED is prepared through taking the ITO group magnetic layer as a spin injection source and combining the original and the existing GaN group LED lighting techniques, compared with the complex preparing process which combines a plurality of producing techniques of a GaMnN group Spin-LED which is provided at present, the method is characterized by arranging the magnetic layer on a transparent electrode part instead, the preparation method is simple and easy to carry out, and various novel spin luminescent diodes can be flexibly and rapidly obtained, and the detecting of the spin injection efficiency can be effectively carried out, simultaneously, the Spin-LED further can be used for researching and designing other various spin electronic devices.
Owner:DONGGUAN INST OF OPTO ELECTRONICS PEKING UNIV

Magnetic recording head and magnetic recording/reproducing apparatus

In high frequency magnetic assisted recording technique, a spin torque oscillator that stably oscillates at a low current and a magnetic recording head with high recording density are provided. In a magnetic recording head including an oscillator that generates a high frequency magnetic field, a spin injection layer structure of two laminated magnetic layers which are coupled to be anti-parallel is adopted. A product Ms×t of the saturated magnetization Ms and the film thickness t of the first magnetic layer close to a field generation layer is smaller than a product Ms×t of the second magnetic layer remote from the field generation layer.
Owner:HITACHI LTD

Magnetic recording apparatus using magnetization reversal by spin injection with thermal assistance

The present invention provides a high density magnetic recording apparatus capable of performing a magnetic write to a magnetic memory cell therein by directly applying current into the memory cell without using external magnetic field; and performing a record read from the cell structure. To reduce the current density required for magnetization reversal by spin injection, the magnetic recording medium is irradiated with laser light so as to heat a magnetic memory cell to a temperature higher than the room temperature but lower than the Curie temperature. While the coercivity of the magnetic recording medium is effectively lowered, magnetic write operation is performed by applying external current into the magnetic memory cell.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products