Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3207 results about "Acetic anhydride" patented technology

Acetic anhydride, or ethanoic anhydride, is the chemical compound with the formula (CH₃CO)₂O. Commonly abbreviated Ac₂O, it is the simplest isolable anhydride of a carboxylic acid and is widely used as a reagent in organic synthesis. It is a colorless liquid that smells strongly of acetic acid, which is formed by its reaction with moisture in the air.

Gastrodin synthesizing method

The invention relates to a gastrodin synthesizing method, which can effectively solve the preparation problem of gastrodin to meet the requirements of the gastrodin in pharmaceuticals. The method comprises the steps of adding catalyst perchloric acid, acetylating anhydrous dextrose by using acetic anhydride to produce per-acetyl dextrose, feeding hydrogen bromide to bromizing hemiacetal hydroxyl of the per-acetyl dextrose to produce bromo-tetraacethyl glucose, further and dropwise adding a bromo-tetraacethyl glucose solution into chloroform and tetrabutyl ammonium bromide, carbonate and para hydroxybenzene in water to obtain 4-formyl benzene-2', 3', 4', 6'- tetraacetyl-beta-D-glucopyranose, performing re-crystallization with ethanol, adding raney nickel or palladium and carbon, feeding hydrogen and pressurizing to hydrogenate, performing filtering, adding sodium alcoholate or ammonia in to filtrate to perform protecting group removal until the reaction is finished completely, performing pressure reduction and concentration to obtain crude gastrodin, and re-crystallizing the crude gastrodin by using alcohol or an alcohol and ester solvent or an alcohol and ketone solvent to obtain the gastrodin. The gastrodin synthesizing method is abundant and cheap in raw materials, simple in process, recycled in solvent, small in pollution and high in quality.
Owner:SHANGHAI MODERN HASEN SHANGQIU PHARMA

Preparation method of thermotropic liquid crystal polyarylester fiber

The invention discloses a preparation method of a thermotropic liquid crystal polyarylester fiber, relates to a preparation method of thermotropic liquid crystal polyarylester, and aims to solve the problems that the existing method for preparing the thermotropic liquid crystal polyarylester is complex and the polyarylester fiber is low in tensile strength. The preparation method of the thermotropic liquid crystal polyarylester fiber comprises the following steps: step one, adding p-hydroxybenzonic acid, 2-(4-hydroxyphenyl)-5-carboxylbenzimidazole, acetic anhydride, 4-diethylaminopyridine and an antioxidant into a polymerization kettle for carrying out melt condensation polymerization to prepare a pre-polymer of thermotropic liquid crystal polyarylester; step two, putting the pre-polymer in a rotary kiln under the condition with nitrogen protection for carrying out solid phase polycondensation reaction to obtain high-molecular-weight polymer powder; step three, mixing the high-molecular-weight polymer powder, then cooling and drawing to prepare primary polyarylester fiber; and step four, carrying out heat treatment on the primary polyarylester fiber. The preparation method of the thermotropic liquid crystal polyarylester fiber is simple to operate; the tensile strength of the polyarylester fiber which is finally obtained can reach 4.0-4.5GPa.
Owner:HEILONGJIANG JUXIANG TECH DEV CO LTD

Method for extracting ketene dimer by rectifying residues and pumped liquid

The invention relates to a method for extracting ketene dimer by rectifying residues and pumped liquid. The method comprises the following steps that firstly, hydrolysis is carried out, wherein primary residues and the pumped liquid are mixed in the proportion of 2:1 and heated to 65-75 DEG C through a membrane type evaporator, ketene dimer is evaporated out, crude ketene dimer obtained through cooling of a primary condenser and a secondary condenser enters a high-order storage tank and is mixed with crude ketene dimer generated in a polymerization section, and then mixed crude ketene dimer enters a rectifying section; secondly, secondary residues formed in the membrane type evaporator and acetic anhydride in the condensers enter a hydrolysis section for hydrolysis, and acetone, dilute acetic acid and solid waste residues are obtained; thirdly, tail gas at the hydrolysis section is fed to a water scrubber to be absorbed. The method has the advantages that crude ketene dimer is recycled through heating of the membrane evaporator, the yield of crude ketene dimer is increased inside the system, consumption of glacial acetic acid is reduced, waste gas and residues generated in the production process are digested and absorbed, solid waste is greatly reduced, and zero waste water emission is achieved.
Owner:ANHUI JINGHE IND

Method for reaction of sucralose esterified single solvent

The invention relates to a method for the reaction of sucralose esterified single solvent, characterized by: 1) DMF, sucrose and organotin acetate are subjected to negative pressure esterification in an esterification kettle while DMF is recovered to the bypass channels of earlier stage by negative pressure distillation and condensing, and the recovered DMF whose water content is larger than 0.9-1.0% ppm is to be delivered into the recovery system; 2) Negative pressure recovery of DMF continues until the water content is less than 0.6% ppm, then which is returned to the esterification kettle for the next batch of esterification reaction; 3) The esterification reaction material is added into the esterification kettle, and acetic anhydride is added dropwisely in; water is added after adding dropwisely, and sucrose 6 ester and organotin acetate are extracted and separated with cyclohexane; organic tin acetate present in the cyclohexane phase, which is produced through evaporating of the cyclohexane solvent. The advantages of the method for the reaction of sucralose esterified single solvent is shortening the production cycle, eliminating the original tin recovery process, reducing the consumption of raw materials and energy and maximizing the savings in all costs.
Owner:ANHUI JINGHE IND

Method for synthesizing naloxone or naltrexone

The invention provides a method for synthesizing naloxone or naltrexone, which comprises the following steps of: dissolving thebaine in formic acid, uniformly stirring, dripping an oxidant, keeping the temperature of between 20 and 40 DEG C for 3 to 7 hours, displacing gas in a reaction vessel by inert gas serving as protective gas for 3 to 5 times, adding a metallic framework catalyst, displacing the gas by hydrogen for 3 to 5 times, keeping the temperature of between 25 and 45 DEG C and stabilizing a system for 7 to 13 hours to obtain a compound 2; reacting the compound 2 with acetic anhydride at the temperature of between 60 and 100 DEG C for 1 to 2 hours to obtain a compound 3; taking the inert gas as the protective gas, adding toluene, chloroformic acid-1-chloroethyl ester and potassium bicarbonate into the compound 3, heating to the temperature of between 75 and 100 DEG C and reacting for 20 to 40 hours, concentrating under reduced pressure until the system is fully dry, adding 10 percent hydrochloric acid, and heating and refluxing for 2 to 6 hours to obtain a compound 4; dissolving the compound 4 and at least one alkylation reagent in an organic solvent 1 and reacting with alkali at the temperature of between 50 and 100 DEG C to obtain a compound 5; and reacting the compound 5 with boron tribromide in an organic solvent 2 at the temperature of between -10 and 40 DEG C for 2 to 4 hours to obtain a compound 6, namely the naloxone or naltrexone.
Owner:甘肃普安制药股份有限公司

Preparation of CT/MRI dual-modality imaging contrast agent based on dendrimer

The invention relates to a method for preparing a computed tomography (CT)/magnatic resonance imaging (MRI) bimodal imaging contrast agent based on dendrimers. The method comprises the following steps of: (1) adding DOTA-N-hydroxy succinimide (NHS) solution into the fifth generation of poly(amidoamine) (PAMAM) dendrimer solution, adding methoxy poly(ethylene glycol) (mPEG)-COOH solution which is subjected to 1-ethy 1-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) activation, reacting with stirring, and thus obtaining functionalized dendrimer solution; (2) adding chloroauric acid solution and sodium borohydride solution into the functionalized dendrimer solution, reacting with stirring, adding gadolinium nitrate solution, stirring, adding triethylamine and acetic anhydride, andreacting with stirring for 8 to 24 hours; and (3) dialyzing the solution obtained in the step (2), performing freeze drying treatment, and thus obtaining the contrast agent. The method has a simple preparation process, and experimental conditions are realized at normal temperature and under normal pressure; and the CT/MRI bimodal imaging contrast agent prepared by the method has a good CT/MRI effect, and a favorable foundation is laid for the development of a novel multifunctional contrast agent.
Owner:DONGHUA UNIV

Preparation method of pegylation modified hyperbranched poly(ethylene imine) coated nano-gold particles

The invention relates to a preparation method of pegylation modified hyperbranched poly(ethylene imine) (PEI) coated nano-gold particles, which comprises the following steps: modifying PEI by using mPEG (polyethylene glycol)-COOH, and sequentially carrying out dialysis and freeze-drying on the obtained product so as to obtain PEI-mPEG; taking the solid, dissolving the solid by using water, adding a HAuCl4 solution into the dissolved solid, stirring the obtained product, adding a NaBH4 solution into the obtained product, and carrying out reaction on the obtained mixture at room temperature; and adding triethylamine and acetic anhydride into the obtained object, and after the reaction is completed, carrying out dialysis and freezing on the obtained product so as to obtain pegylation modified hyperbranched polymine coated nano-gold particles. According to the invention, the cheap and easily-obtained PEI is taken as a carrier, so that the cost of materials is reduced; the surface of PEI is modified by using mPEG-COOH, so that the biocompatibility of materials and the colloidal stability of nano-gold particles are improved, and the nano-gold particles are successfully applied to vivo CT (computed tomography) imaging. The method disclosed by the invention is simple in design, mild in reaction conditions and easy to operate, and has an industrialized implementation prospect.
Owner:DONGHUA UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products