Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1928results about "Ferroso-ferric oxides" patented technology

Preparation method of nano porous metal oxide/carbon lithium ion battery cathode material

The invention provides a preparation method of a nano porous metal oxide/carbon lithium ion battery cathode material. The preparation method comprises the following steps: firstly, weighting ferric salt or manganese salt and carboxylate organic ligands, and putting into a high-pressure reaction kettle; and after a polar solvent is added and dissolved, carrying out a hydrothermal reaction for 10-72h at 100-180 DEG C to generate a transition metal coordination polymer precursor; and after the transition metal coordination polymer precursor is washed and dried, decomposing the precursor for 0.5-6h at a temperature of 300-600 DEG C in an inert atmosphere in a tube furnace, thus obtaining a nano porous metal oxide/carbon lithium ion battery cathode material containing iron oxides or manganese oxides. According to the preparation method, since the transition metal coordination polymer precursor which is structurally designable and controllable is used as a template-type precursor, a nano porous metal oxide/carbon lithium ion battery cathode material is obtained by using an in-situ thermal decomposition method. The method is simple in process, and the obtained products have the advantages of high electrical conductivity, high specific capacity, good cycle stability, excellent high-ratio discharge performance and high energy density.
Owner:JIANGSU UNIV

Preparation method of grapheme and ferriferrous oxide composite nanometer material

InactiveCN103274396ASolve the lack of interface binding forceResolving Particle MorphologyMaterial nanotechnologyGrapheneMicrosphereSolvent
A preparation method of a grapheme and ferriferrous oxide composite nanometer material belongs to the technical field of functional materials. The preparation method comprises the following steps: at first, oxidized grapheme is prepared by an improved chemical method; and then oxidized grapheme and ferric ions are adopted as raw materials, and are compounded through adopting a solvothermal technology to carry out one-step in-situ reduction to obtain the grapheme and ferriferrous oxide composite nanometer material. The preparation method solves the problems in the prior art that the interface binding force of grapheme and a magnetic material is insufficient, the appearances, the sizes and the magnetism of magnetic material particles are uncontrollable, and the magnetic material particles cannot be dispersed in water; the prepared composite nanometer material shows a microspheric appearance, has a loose surface and is high in specific surface area; through the change of the ratio of grapheme to the ferric ions, final magnetic property and electrical property of the composite material can be adjusted; and the controllable growth of the grapheme and ferriferrous oxide composite material is realized. The prepared grapheme and ferriferrous oxide nanometer microsheric material with magnetic and electric properties can be used in fields such as biological medicine, energy, invisibility and electronic materials.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Preparation method of nitrogen doped graphene/ metal oxide nanometer composite material

The invention discloses a preparation method of a nitrogen doped graphene / metal oxide nanometer composite material. The preparation method comprises the following steps of: weighing graphene and metal salt the cation of which is trivalent or quadrivalent to be added in a dispersant, and then carrying out ultrasonic dispersion to obtain mixed liquor; (2), reacting the mixed liquor obtained in the step (1) with alkaline air on a gas-liquid interface for 3-12hours at the temperature of 60-200 DEG C, cooling, centrifuging, washing a precipitate and drying to obtain powder; and (3) introducing the alkaline air or a mixed gas of the alkaline air and inert gas, maintaining the powder to be at the constant temperature of 600-900 DEG C for 2-6 hours, and cooling to room temperature to obtain the nitrogen doped graphene / metal oxide nanometer composite material. According to the invention, the conductibility and interface action of the composite material obtained by the method provided by the invention are improved due to the doping of nitrogen; and the method provided by the invention has the advantages of simple process, cheap cost, high productive rate, short cycle and the like, and is environment-friendly, and can be suitable for industrialization large-scale production.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method for magnetic carbon-coated ferroferric oxide nano-composite material

The present invention relates to a preparation method for a magnetic carbon-coated ferroferric oxide nano-composite material by a one-step carbonization reaction method. With the present invention, physical properties and chemical properties of the magnetic material are improved, and the application range of the nano-composite material is enlarged. The technical scheme of the present invention is that: massive FeCl3.6H2O is crushed into powder; the FeCl3.6H2O powder is placed in a beaker; then glycol is added, and a uniform stirring treatment is performed; urea and cyclodextrin powder are added to the resulting solution, and a uniform stirring treatment is performed; then the resulting mixing solution is transferred to a reaction kettle, and a reaction is performed for 6-24 hours at a temperature of 180-200 DEG C and under pressure of 0.105-0.150 MPa; finally, the mixing solution is cooled to the room temperature, treatments of sedimentation, separation and washing are performed, then a drying treatment is performed for 4-8 hours at the temperature of 80 DEG C to prepare the magnetic carbon-coated ferroferric oxide nano-composite material. According to the present invention, the preparation method is simple; the cost is low; the particle size of the product is small; the particles are the core-shell structures, wherein the Fe3O4 is the core, the carbon-coated layer is the amorphous carbon, and the surface of the carbon-coated layer contains hydroxyl groups; the material of the present invention is adopted as the catalyst carrier, and is applicable for wastewater treatments.
Owner:SOUTHWEST PETROLEUM UNIV

Method for preparing carbon-coated superparamagnetic ferroferric oxide gel

The invention discloses a method for preparing carbon-coated superparamagnetic ferroferric oxide gel, which comprises: dissolving ferrocene and surfactant in an acetone solvent; adding solution of hydrogen peroxide into the solution to directly oxidize the ferrocene to synthesize polycrystal uniform magnetic nano balls under a low-temperature (180 to 240 DEG C) solvothermal condition; and allowing the polycrystal uniform magnetic nano balls to react in a magnetic field to prepare a magnetic linear nano material. The polycrystal uniform magnetic nano balls and nano chains are characterized in that: the particle size of the polycrystal uniform magnetic nano balls is limited to a narrow range and controllable; and the nano chains consist of uniform spherical particles and have high stability, and the inter-chain distance is controllable. The superparamagnetic polycrystal uniform nano ball and linear nano chain materials have high superparamagnetism and high chemical stability and gel stability and have promising application prospect in the field of biomedicine, nano self-assembly and the like; the nano balls are grafted by medicaments and can be used as medicament carriers; under the action of the magnetic field, the nano balls can be used as magnetic control photonic crystal; and the nano chains have a promising application prospect in the field of Bragg reflectors, magnetic probes, biomedicine and the like.
Owner:UNIV OF SCI & TECH OF CHINA

Chemical preparation method of magnetic graphene

The invention relates to a preparation method of magnetic graphene, in particular to a chemical preparation method of magnetic graphene. The preparation method aims at solving the problems of the existing synthesis method that the reaction process is toxic and harmful to the environment, large-scale production cannot be realized, the morphology, size and magnetism of magnetic nanoparticles in the magnetic graphene are not controllable and the magnetic graphene cannot be dispersed in water. The chemical preparation method comprises the steps of: 1) preparing aminated Fe3O4 magnetic nanoparticles; 2) preparing graphene; and 3) preparing magnetic graphene through chemical reaction. The chemical preparation method of the magnetic graphene has the advantages that the high temperature and the high pressure are not required, the equipment is simple, the process cost is low, the environment is protected, no pollution is caused, the grain size of the synthesized magnetic nanoparticles is uniform, the controllable growth of the magnetic nanoparticles can be realized by changing reaction conditions, the solubility of the synthesized magnetic graphene is 0.8-1.2mg/ml, the magnetic graphene can be stably dispersed in water and sediment does not occur within 1-2 months. The graphene prepared by adopting the method can be used in biomedical, energy, electronic fields and the like.
Owner:HARBIN INST OF TECH

Hydrothermal preparation method for carbon cladded nanometer ferriferrous oxide particles

The invention discloses a c hydrothermal preparation method for carbon cladded nanometer ferriferrous oxide particles. The method comprises the following steps: mixing an glucose carbon source solution with a ferric nitrate solution; subjecting an obtained mixture to a hydrothermal reaction; collecting sediment through centrifugation after the hydrothermal reaction and dispersing the sediment in ionic water again; carrying out freeze-drying so as to obtain powder; and calcining the powder in a tubular furnace in an inert atmosphere so as to obtain the carbon cladded nanometer ferriferrous oxide particles. The nanometer particles have good stability, do not easily get agglomerated and have a particle size controllable within a range from 50 nm to 500 nm; and the preparation method is simple, safe and non-toxic, has high output and is applicable to industrial production and utilization. The carbon cladded nanometer ferriferrous oxide particles can be used in a wide variety of fields like magnetic materials, catalyst supporters, magnetic resonance imaging and targeting drug carriers; and the particles can also be used for a negative electrode material of an electrode of a novel lithium ion battery and show a reversible lithium storage property.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products