Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

107results about How to "Achieve controlled growth" patented technology

Preparation method of grapheme and ferriferrous oxide composite nanometer material

InactiveCN103274396ASolve the lack of interface binding forceResolving Particle MorphologyMaterial nanotechnologyGrapheneMicrosphereSolvent
A preparation method of a grapheme and ferriferrous oxide composite nanometer material belongs to the technical field of functional materials. The preparation method comprises the following steps: at first, oxidized grapheme is prepared by an improved chemical method; and then oxidized grapheme and ferric ions are adopted as raw materials, and are compounded through adopting a solvothermal technology to carry out one-step in-situ reduction to obtain the grapheme and ferriferrous oxide composite nanometer material. The preparation method solves the problems in the prior art that the interface binding force of grapheme and a magnetic material is insufficient, the appearances, the sizes and the magnetism of magnetic material particles are uncontrollable, and the magnetic material particles cannot be dispersed in water; the prepared composite nanometer material shows a microspheric appearance, has a loose surface and is high in specific surface area; through the change of the ratio of grapheme to the ferric ions, final magnetic property and electrical property of the composite material can be adjusted; and the controllable growth of the grapheme and ferriferrous oxide composite material is realized. The prepared grapheme and ferriferrous oxide nanometer microsheric material with magnetic and electric properties can be used in fields such as biological medicine, energy, invisibility and electronic materials.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Chemical preparation method of magnetic graphene

The invention relates to a preparation method of magnetic graphene, in particular to a chemical preparation method of magnetic graphene. The preparation method aims at solving the problems of the existing synthesis method that the reaction process is toxic and harmful to the environment, large-scale production cannot be realized, the morphology, size and magnetism of magnetic nanoparticles in the magnetic graphene are not controllable and the magnetic graphene cannot be dispersed in water. The chemical preparation method comprises the steps of: 1) preparing aminated Fe3O4 magnetic nanoparticles; 2) preparing graphene; and 3) preparing magnetic graphene through chemical reaction. The chemical preparation method of the magnetic graphene has the advantages that the high temperature and the high pressure are not required, the equipment is simple, the process cost is low, the environment is protected, no pollution is caused, the grain size of the synthesized magnetic nanoparticles is uniform, the controllable growth of the magnetic nanoparticles can be realized by changing reaction conditions, the solubility of the synthesized magnetic graphene is 0.8-1.2mg/ml, the magnetic graphene can be stably dispersed in water and sediment does not occur within 1-2 months. The graphene prepared by adopting the method can be used in biomedical, energy, electronic fields and the like.
Owner:HARBIN INST OF TECH

A method for prepare a nitrogen doped carbon nanotube three-dimensional composite material by in-situ growth of a small lay of titanium carbide

The invention belongs to the technical field of preparation of nano-functional materials, in particular to a method for preparing a nitrogen doped carbon nanotube three-dimensional composite materialby in-situ growth of a few layers of titanium carbide, immersing ternary layered Ti3AlC2 ceramic powder in hydrofluoric acid solution, heating and stirring, centrifugally cleaning with ultrapure waterand absolute ethanol, drying to obtain two-dimensional layered titanium carbide nano-powder, adding it into tetramethylammonium hydroxide solution, heating and stirring, centrifuging with deionized water to obtain a few layers of titanium carbide nano-sheet dispersion; Adding cobalt salt into a dispersion of a few layers of titanium carbide nano-sheets for reaction, adding dicyandiamide, heatingand stirring until dicyandiamide is completely dissolved, freezing, and freeze-drying to obtain precursor powder; Nitrogen-doped carbon nanotubes (CNTs) three-dimensional composites were prepared by in-situ growth of a few layers of titanium carbide after grinding the precursor powder and heat treatment. A three-dimensional composite material is prepared by a simple pyrolysis method using a few layers of titanium carbide as a carrier, cobalt as a catalyst, dicyandiamide as a carbon and nitrogen source, and the electrochemical performance of the few layers of titanium carbide can be improved.
Owner:UNIV OF JINAN

Titanium dioxide nanoflower film photoanode and preparation method thereof

The invention discloses a titanium dioxide (TiO2) nanoflower film photoanode and a preparation method thereof. The photoandoe consists of common glass, a fluorine (F) doped tin dioxide (SnO2) transparent conductive film and a TiO2 nanoflower film. The preparation method comprises the following step of: directly synthesizing the TiO2 nanoflower film serving as the photoanode of a dye-sensitized solar cell on a FTO glass substrate by taking a mixture of concentrated hydrochloric acid, deionized water, toluene and butyl titanate as a reaction precursor and by hydro-thermal synthesis technology, wherein the shape of nanoflowers and the diameter and the length of nanorods consisting of the nanoflowers can be controlled by changing the ratio of the concentrated hydrochloric acid to the deionized water to the toluene and the concentration of the butyl titanate in the reaction precursor. By using higher light utilization efficiency and excellent electron transfer characteristic of TiO2 nanowires, the photoanode has the advantages of ensuring higher light trapping efficiency of electrodes, improving the transportation capacity of photon-generated carriers, reducing the recombination process of the photon-generated carriers, and consequently improving the photoelectric conversion efficiency of the dye-sensitized solar cells.
Owner:GUANGDONG UNIV OF TECH

TiO2 nanowire array film light anode and preparation method thereof

The invention discloses a TiO2 nanowire array film light anode and a preparation method thereof. The structure of the light anode comprises common glass, an F-doped SnO2 transparent conducting film and a TiO2 nanowire array film. The preparation method comprises the following step of directly synthesizing the TiO2 nanowire array film which is used as a light anode of a dye-sensitization solar battery on a FTO (Tin Oxide) glass substrate by using the mixture of concentrated hydrochloric acid, deionized water and tetrabutyl titanate as a reaction precursor in a hydrothermal synthesis technique. The method controls the diameters and densities of nanowires by changing the ratio of the concentrated hydrochloric acid to the deionized water in the reaction precursor and the concentration of the tetrabutyl titanate, controls the lengths of the TiO2 nanowires by changing reaction time, and ensures that the electrode has higher light capturing efficiency, improves the transporting capacity of photon-generated carriers and reduces the compounding process of the photon-generated carrier by utilizing higher light utilization rate and favorable electron shifting properties of the TiO2 nanowires, thereby improving the photoelectric conversion efficiency of the dye-sensitization solar battery.
Owner:GUANGDONG UNIV OF TECH

Titanium carbide in-situ growth CNTs three-dimensional composite with polydopamine serving as transition layer and preparation method thereof

The invention relates to a titanium carbide in-situ growth CNTs three-dimensional composite with polydopamine serving as a transition layer and a preparation method thereof. The method includes the steps that Ti3C2 nano-powder and dopamine hydrochloride are dispersed into ultrapure water respectively, even mixing is conducted, and stirring is conducted under the shading condition; a Tris- buffer solution is added, and stirring continues under the shading condition; the obtained mixed solution is subjected to separation, washing and drying, and Ti3C2@PDA nano-powder is obtained; the Ti3C2@PDA nano-powder is added into ultrapure water, Co(NO3)2.6H2O is added after uniform dispersion, and stirring is conducted for a reaction; urea is added after the reaction is finished, stirring is continuously conducted under a constant temperature to evaporate water, and precursor powder is obtained; the precursor powder is subjected to heat treatment, and the titanium carbide in-situ growth CNTs three-dimensional composite with polydopamine serving as the transition layer is obtained. The Ti3C2@PDA@CNTs three-dimensional composite is successfully prepared through a simple pyrolysis method.
Owner:SHAANXI UNIV OF SCI & TECH

Ag-carbon nano fiber composite material as well as preparation method and application thereof

The invention provides an Ag-carbon nano fiber composite material as well as a preparation method and application thereof. The preparation method provided by the invention adopts a one-step method and has moderate conditions; special instruments and equipment are not needed, high temperature and high pressure are not needed, the operation is simple and feasible and the efficiency is high; hydrothermal reaction does not need a template; a monosaccharide is used as a carbon source and reduction reaction between the monosaccharide and a catalyst precursor Ag3PO4-AgCl is realized; the in-situ catalytic growth of carbon nano fibers is realized, Ag nanoparticles are highly dispersed in situ and loaded on the carbon nano fibers and Ag nano-wires are filled into cavities of the carbon nano fibers in situ. A result of the embodiment shows that the Ag-carbon nano fiber composite material is used for photo-catalytically degrading an organic pollutant methylene blue under visible light; after the methylene blue is adsorbed for 2h under a dark state, the concentration of the methylene blue is reduced to 55 percent of initial concentration; after the methylene blue is photo-catalytically degraded for 2h under the visible light, the removal efficiency of the methylene blue can reach 95 percent or more.
Owner:JIANGXI NORMAL UNIV

Molecular beam epitaxial (MBE) growth method of Bi element regulated and controlled GaAs-based nanowire crystal structure

The invention discloses a molecular beam epitaxial (MBE) growth method of a Bi element regulated and controlled GaAs-based nanowire crystal structure. A Bi element is introduced as an activating agent during the growing process of nanowires in an MBE growth chamber, the ionicity of GaAs is reduced, and the formation of a nanowire zinc blende structure is promoted. The method is characterized in that the Bi evaporator source temperature is regulated during the process of nanowire growth according to the beam equivalent partial pressure of a Ga element so as to control the beam equivalent partial pressure of the Bi element and to ensure that the ratio of the beam equivalent partial pressure of the Bi element to that of the Ga element is x, and the value of x can influence the regulating and controlling ability of the Bi element to the nanowire crystal structure and influence the feature and the phase structure purity of the nanowires. The method has the benefits that the growth of the GaAs-bases nanowires with the zinc blende crystal structure can be easily realized without changing the growth process conditions of MBE, and thus the method is beneficial to the controlled growth of the GaAs-based nanowires with the wurtzite and zinc blende structure and the formation of a homogeneous heterophase heterogeneous structure of the nanowires, and provides an excellent material for preparing nanoscale photoelectronic devices.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Black phosphorus film as well as preparation method and application thereof

The invention relates to the technical field of two-dimensional materials, in particular to a preparation method of a black phosphorus film. The preparation method is characterized in that a growth substrate, a phosphorus-containing precursor and a mineralizer are placed in a vacuum closed reaction chamber, wherein the growth substrate and the phosphorus-containing precursor are placed in different areas in the vacuum closed reaction chamber; the reaction chamber is heated and subjected to heat preservation, so that the mineralizer reacts with part of phosphorus-containing gas from the phosphorus-containing precursor, and an induced nucleating point or an induced nucleating layer for inducing black phosphorus crystallization is formed on the growth substrate; and the temperature of the reaction chamber is reduced, the phosphorus-containing gas is deposited on the growth substrate and epitaxially grows under the induction of the induction nucleating point or the induction nucleating layer to form the black phosphorus film. The black phosphorus film has high quality, high crystallinity and strong repeatability, is suitable for large-area and batch production of the black phosphorus film, and meets the industrial requirements in practical application.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Preparation method for HfS2 signal crystal nanosheet

The invention discloses a preparation method for a HfS2 single crystal nanosheet, and belongs to the field of preparation of semiconductor materials. The method comprises the following steps: (1) putting an S source and an Hf source in an upstream area of a quartz tube, placing an embedded quartz tube of which an inner diameter is smaller than that of the quartz tube in a downstream area, and placing a mica substrate into the embedded quartz tube; (2) performing vacuumizing on the interior of the quartz tube, introducing an inert gas to make pressure in the tube keep an atmospheric pressure environment, and introducing a carrier gas flow and a protective gas; and 3) heating the S source and the Hf source to evaporation, performing a reaction for 5-15 minutes under conditions that the temperature is 800-980 DEG C, a distance d between the mica substrate and the lower wall of the embedded quartz tube is 0.5-2.5mm, performing natural cooling on the quartz tube to a room temperature, and taking out the substrate. According to the invention, parameters such as the distance d between the mica substrate and the lower wall of the embedded quartz tube and a deposition temperature are optimized, thus controllable growth of the HfS2 nanosheet with a thickness of 0.8-15nm and a side length of about 5 micrometers is realized.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products